--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: swin-tiny-patch4-window7-224-image-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8080808080808081 - name: F1 type: f1 value: 0.750428326670474 - name: Precision type: precision value: 0.6850886339937435 - name: Recall type: recall value: 0.8295454545454546 --- # swin-tiny-patch4-window7-224-image-classifier This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3204 - Accuracy: 0.8081 - F1: 0.7504 - Precision: 0.6851 - Recall: 0.8295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6377 | 1.0 | 143 | 0.6156 | 0.6421 | 0.5356 | 0.4881 | 0.5934 | | 0.4556 | 2.0 | 286 | 0.4928 | 0.7141 | 0.6286 | 0.5734 | 0.6957 | | 0.3616 | 3.0 | 429 | 0.5772 | 0.6895 | 0.5930 | 0.5450 | 0.6503 | | 0.3582 | 4.0 | 572 | 0.3441 | 0.7835 | 0.6644 | 0.7208 | 0.6162 | | 0.3374 | 5.0 | 715 | 0.4094 | 0.7699 | 0.7434 | 0.6072 | 0.9583 | | 0.3273 | 6.0 | 858 | 0.6065 | 0.7115 | 0.6364 | 0.5665 | 0.7260 | | 0.3091 | 7.0 | 1001 | 0.3204 | 0.8081 | 0.7504 | 0.6851 | 0.8295 | | 0.3026 | 8.0 | 1144 | 0.3946 | 0.7694 | 0.6120 | 0.7380 | 0.5227 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3