--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: swin-tiny-patch4-window7-224-image-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7167325428194994 - name: F1 type: f1 value: 0.6734177215189874 - name: Precision type: precision value: 0.5621301775147929 - name: Recall type: recall value: 0.8396464646464646 --- # swin-tiny-patch4-window7-224-image-classifier This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5309 - Accuracy: 0.7167 - F1: 0.6734 - Precision: 0.5621 - Recall: 0.8396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6658 | 1.0 | 143 | 0.6313 | 0.6421 | 0.0512 | 0.3284 | 0.0278 | | 0.5528 | 2.0 | 286 | 0.5433 | 0.6987 | 0.5396 | 0.5759 | 0.5076 | | 0.417 | 3.0 | 429 | 0.4806 | 0.7273 | 0.6306 | 0.5962 | 0.6692 | | 0.3738 | 4.0 | 572 | 0.4195 | 0.7668 | 0.6849 | 0.6461 | 0.7285 | | 0.3385 | 5.0 | 715 | 0.5555 | 0.7141 | 0.6720 | 0.5591 | 0.8422 | | 0.3274 | 6.0 | 858 | 0.5506 | 0.7159 | 0.6646 | 0.5638 | 0.8093 | | 0.3176 | 7.0 | 1001 | 0.5309 | 0.7167 | 0.6734 | 0.5621 | 0.8396 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3