File size: 3,857 Bytes
aa5b5e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: flan_t5_small_ledgar
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan_t5_small_ledgar
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5534
- Accuracy: 0.8525
- F1 Macro: 0.7680
- F1 Micro: 0.8525
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
| 2.1741 | 0.11 | 100 | 1.6958 | 0.6204 | 0.3397 | 0.6204 |
| 1.2325 | 0.21 | 200 | 1.0701 | 0.7302 | 0.5340 | 0.7302 |
| 0.9558 | 0.32 | 300 | 0.8877 | 0.7713 | 0.6186 | 0.7713 |
| 0.8635 | 0.43 | 400 | 0.8029 | 0.788 | 0.6469 | 0.788 |
| 0.8667 | 0.53 | 500 | 0.7517 | 0.8035 | 0.6794 | 0.8035 |
| 0.7975 | 0.64 | 600 | 0.7280 | 0.8031 | 0.6852 | 0.8031 |
| 0.7511 | 0.75 | 700 | 0.7209 | 0.8124 | 0.6907 | 0.8124 |
| 0.7683 | 0.85 | 800 | 0.6883 | 0.811 | 0.6968 | 0.811 |
| 0.6874 | 0.96 | 900 | 0.6764 | 0.8137 | 0.7147 | 0.8137 |
| 0.6042 | 1.07 | 1000 | 0.6628 | 0.8236 | 0.7097 | 0.8236 |
| 0.6397 | 1.17 | 1100 | 0.6546 | 0.8233 | 0.7171 | 0.8233 |
| 0.6584 | 1.28 | 1200 | 0.6371 | 0.831 | 0.7400 | 0.831 |
| 0.5718 | 1.39 | 1300 | 0.6346 | 0.8295 | 0.7350 | 0.8295 |
| 0.5012 | 1.49 | 1400 | 0.6176 | 0.8343 | 0.7446 | 0.8343 |
| 0.5843 | 1.6 | 1500 | 0.6214 | 0.8331 | 0.7376 | 0.8331 |
| 0.6021 | 1.71 | 1600 | 0.6024 | 0.8395 | 0.7455 | 0.8395 |
| 0.5538 | 1.81 | 1700 | 0.5964 | 0.843 | 0.7516 | 0.843 |
| 0.5391 | 1.92 | 1800 | 0.5835 | 0.8431 | 0.7590 | 0.8431 |
| 0.4632 | 2.03 | 1900 | 0.5845 | 0.842 | 0.7432 | 0.842 |
| 0.4581 | 2.13 | 2000 | 0.5832 | 0.8451 | 0.7575 | 0.8451 |
| 0.4806 | 2.24 | 2100 | 0.5749 | 0.8444 | 0.7639 | 0.8444 |
| 0.4438 | 2.35 | 2200 | 0.5704 | 0.85 | 0.7642 | 0.85 |
| 0.4379 | 2.45 | 2300 | 0.5667 | 0.8486 | 0.7598 | 0.8486 |
| 0.4342 | 2.56 | 2400 | 0.5614 | 0.8503 | 0.7642 | 0.8503 |
| 0.4197 | 2.67 | 2500 | 0.5605 | 0.8527 | 0.7684 | 0.8527 |
| 0.4417 | 2.77 | 2600 | 0.5568 | 0.8505 | 0.7652 | 0.8505 |
| 0.4401 | 2.88 | 2700 | 0.5542 | 0.8529 | 0.7685 | 0.8529 |
| 0.4666 | 2.99 | 2800 | 0.5534 | 0.8525 | 0.7680 | 0.8525 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|