Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +10 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/README.md +78 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/adapter_config.json +33 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/adapter_model.bin +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/added_tokens.json +5 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/all_results.json +23 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/README.md +202 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/adapter_config.json +33 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/adapter_model.bin +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/added_tokens.json +5 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/global_step550/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/global_step550/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/global_step550/mp_rank_00_model_states.pt +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/latest +1 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/merges.txt +0 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/rng_state_0.pth +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/rng_state_1.pth +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/scheduler.pt +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/special_tokens_map.json +14 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/tokenizer.json +0 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/tokenizer_config.json +43 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/trainer_state.json +527 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/training_args.bin +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/vocab.json +0 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/zero_to_fp32.py +604 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/eval_results.json +11 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/merges.txt +0 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/run.log +4 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/special_tokens_map.json +14 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/test_results.json +10 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/tokenizer.json +0 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/tokenizer_config.json +43 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/train_results.json +8 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/trainer_state.json +550 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/training_args.bin +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/vocab.json +0 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/README.md +75 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/adapter_config.json +33 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/adapter_model.bin +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/added_tokens.json +5 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/all_results.json +23 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/README.md +202 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/adapter_config.json +33 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/adapter_model.bin +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/added_tokens.json +5 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/global_step400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/global_step400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/global_step400/mp_rank_00_model_states.pt +3 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/latest +1 -0
- max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/merges.txt +0 -0
.gitattributes
CHANGED
@@ -63,3 +63,13 @@ max_seq_length_512_experiments/google/gemma_2b_scotus/checkpoint-300/tokenizer.j
|
|
63 |
max_seq_length_512_experiments/google/gemma_2b_scotus/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
64 |
max_seq_length_512_experiments/google/gemma_2b_twitter/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
65 |
max_seq_length_512_experiments/google/gemma_2b_twitter/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
max_seq_length_512_experiments/google/gemma_2b_scotus/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
64 |
max_seq_length_512_experiments/google/gemma_2b_twitter/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
65 |
max_seq_length_512_experiments/google/gemma_2b_twitter/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
66 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
67 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_MAdAiLab/amazon_attrprompt_default/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
68 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-150/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
69 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_MAdAiLab/twitter_disaster_default/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
70 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_ccdv/patent_classification_abstract/checkpoint-1000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
71 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_ccdv/patent_classification_abstract/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
72 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_coastalcph/lex_glue_ledgar/checkpoint-1750/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
73 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_coastalcph/lex_glue_ledgar/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
74 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_coastalcph/lex_glue_scotus/checkpoint-200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
75 |
+
max_seq_length_512_experiments/LoRA/google/gemma_7b_LoRA_coastalcph/lex_glue_scotus/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: Qwen/Qwen1.5-7B
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: amazon_attrprompt_default
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# amazon_attrprompt_default
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4968
|
22 |
+
- Accuracy: 0.8597
|
23 |
+
- F1 Macro: 0.8370
|
24 |
+
- F1 Micro: 0.8597
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-06
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- distributed_type: multi-GPU
|
48 |
+
- num_devices: 2
|
49 |
+
- total_train_batch_size: 64
|
50 |
+
- total_eval_batch_size: 64
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 3.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
|
59 |
+
| 5.8578 | 0.26 | 50 | 5.5037 | 0.1252 | 0.0968 | 0.1252 |
|
60 |
+
| 2.3145 | 0.53 | 100 | 1.9805 | 0.5283 | 0.4222 | 0.5283 |
|
61 |
+
| 0.9115 | 0.79 | 150 | 0.9064 | 0.7721 | 0.7139 | 0.7721 |
|
62 |
+
| 0.7251 | 1.05 | 200 | 0.7034 | 0.8090 | 0.7669 | 0.8090 |
|
63 |
+
| 0.5086 | 1.32 | 250 | 0.6432 | 0.8267 | 0.7756 | 0.8267 |
|
64 |
+
| 0.5473 | 1.58 | 300 | 0.5911 | 0.8353 | 0.7983 | 0.8353 |
|
65 |
+
| 0.514 | 1.84 | 350 | 0.5454 | 0.8564 | 0.8329 | 0.8564 |
|
66 |
+
| 0.4493 | 2.11 | 400 | 0.5437 | 0.8465 | 0.8172 | 0.8465 |
|
67 |
+
| 0.516 | 2.37 | 450 | 0.5225 | 0.8531 | 0.8289 | 0.8531 |
|
68 |
+
| 0.343 | 2.63 | 500 | 0.4982 | 0.8557 | 0.8339 | 0.8557 |
|
69 |
+
| 0.4203 | 2.89 | 550 | 0.4968 | 0.8597 | 0.8370 | 0.8597 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- PEFT 0.9.0
|
75 |
+
- Transformers 4.39.0.dev0
|
76 |
+
- Pytorch 2.2.1+cu121
|
77 |
+
- Datasets 2.18.0
|
78 |
+
- Tokenizers 0.15.2
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen1.5-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.0,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 128,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"k_proj",
|
23 |
+
"o_proj",
|
24 |
+
"v_proj",
|
25 |
+
"down_proj",
|
26 |
+
"q_proj",
|
27 |
+
"up_proj",
|
28 |
+
"gate_proj"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cedc29f0e3c70b05d17a273bde6f9c121acca7eb499a20c583e76da75799cbfb
|
3 |
+
size 1882260178
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/all_results.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8596837944664032,
|
4 |
+
"eval_f1_macro": 0.8369626014217448,
|
5 |
+
"eval_f1_micro": 0.8596837944664032,
|
6 |
+
"eval_loss": 0.4968219995498657,
|
7 |
+
"eval_runtime": 69.9894,
|
8 |
+
"eval_samples": 1518,
|
9 |
+
"eval_samples_per_second": 21.689,
|
10 |
+
"eval_steps_per_second": 0.343,
|
11 |
+
"test_accuracy": 0.8656126482213439,
|
12 |
+
"test_f1_macro": 0.8325216055106754,
|
13 |
+
"test_f1_micro": 0.8656126482213439,
|
14 |
+
"test_loss": 0.4752732813358307,
|
15 |
+
"test_runtime": 71.3407,
|
16 |
+
"test_samples_per_second": 21.278,
|
17 |
+
"test_steps_per_second": 0.336,
|
18 |
+
"train_loss": 1.5545654296875,
|
19 |
+
"train_runtime": 6735.4111,
|
20 |
+
"train_samples": 12144,
|
21 |
+
"train_samples_per_second": 5.409,
|
22 |
+
"train_steps_per_second": 0.085
|
23 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen1.5-7B
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen1.5-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.0,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 128,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"k_proj",
|
23 |
+
"o_proj",
|
24 |
+
"v_proj",
|
25 |
+
"down_proj",
|
26 |
+
"q_proj",
|
27 |
+
"up_proj",
|
28 |
+
"gate_proj"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cedc29f0e3c70b05d17a273bde6f9c121acca7eb499a20c583e76da75799cbfb
|
3 |
+
size 1882260178
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/global_step550/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebaf6fa93d3430bc145598aa505e219ab667a5f938f820ac94c1169747e80395
|
3 |
+
size 1919487472
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/global_step550/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3397151de151c5dedad4dda7af68c85ab858df82dbf136614e81529bad333259
|
3 |
+
size 1919487600
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/global_step550/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7860285270e3c30292d40ae46c06834ae4b7394e3a03162fe85c73be54c8fb9f
|
3 |
+
size 640146476
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step550
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa878b9dab4c3723c4f5604b647f0a382b5b43b32ec9ed579e02f8f396f30f88
|
3 |
+
size 14512
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07a380ec5d7ef6434080f7e34913d8fb510f595347139628691d6320bcf76a7f
|
3 |
+
size 14512
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:398f41e79c8fa897296b46d4295b47f9f97b941419fa2b04df7bf09aa5e5015d
|
3 |
+
size 1064
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/trainer_state.json
ADDED
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.4968219995498657,
|
3 |
+
"best_model_checkpoint": "../experiments_checkpoints/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550",
|
4 |
+
"epoch": 2.8947368421052633,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 550,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.05,
|
13 |
+
"grad_norm": 78.0635757446289,
|
14 |
+
"learning_rate": 4.912280701754386e-06,
|
15 |
+
"loss": 11.5813,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.11,
|
20 |
+
"grad_norm": 72.21075439453125,
|
21 |
+
"learning_rate": 4.824561403508772e-06,
|
22 |
+
"loss": 9.4297,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.16,
|
27 |
+
"grad_norm": 67.49365997314453,
|
28 |
+
"learning_rate": 4.736842105263158e-06,
|
29 |
+
"loss": 8.2891,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.21,
|
34 |
+
"grad_norm": 66.80319213867188,
|
35 |
+
"learning_rate": 4.649122807017544e-06,
|
36 |
+
"loss": 6.8797,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.26,
|
41 |
+
"grad_norm": 65.08647155761719,
|
42 |
+
"learning_rate": 4.56140350877193e-06,
|
43 |
+
"loss": 5.8578,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.26,
|
48 |
+
"eval_accuracy": 0.1251646903820817,
|
49 |
+
"eval_f1_macro": 0.09680804168971274,
|
50 |
+
"eval_f1_micro": 0.1251646903820817,
|
51 |
+
"eval_loss": 5.503664493560791,
|
52 |
+
"eval_runtime": 70.8056,
|
53 |
+
"eval_samples_per_second": 21.439,
|
54 |
+
"eval_steps_per_second": 0.339,
|
55 |
+
"step": 50
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.32,
|
59 |
+
"grad_norm": 56.8034553527832,
|
60 |
+
"learning_rate": 4.473684210526316e-06,
|
61 |
+
"loss": 5.1516,
|
62 |
+
"step": 60
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.37,
|
66 |
+
"grad_norm": 48.72732925415039,
|
67 |
+
"learning_rate": 4.385964912280702e-06,
|
68 |
+
"loss": 4.1211,
|
69 |
+
"step": 70
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.42,
|
73 |
+
"grad_norm": 52.9466667175293,
|
74 |
+
"learning_rate": 4.298245614035088e-06,
|
75 |
+
"loss": 3.4531,
|
76 |
+
"step": 80
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.47,
|
80 |
+
"grad_norm": 52.9542350769043,
|
81 |
+
"learning_rate": 4.210526315789474e-06,
|
82 |
+
"loss": 2.9504,
|
83 |
+
"step": 90
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.53,
|
87 |
+
"grad_norm": 49.08361053466797,
|
88 |
+
"learning_rate": 4.12280701754386e-06,
|
89 |
+
"loss": 2.3145,
|
90 |
+
"step": 100
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.53,
|
94 |
+
"eval_accuracy": 0.52832674571805,
|
95 |
+
"eval_f1_macro": 0.4222235273845894,
|
96 |
+
"eval_f1_micro": 0.52832674571805,
|
97 |
+
"eval_loss": 1.9804636240005493,
|
98 |
+
"eval_runtime": 70.8343,
|
99 |
+
"eval_samples_per_second": 21.43,
|
100 |
+
"eval_steps_per_second": 0.339,
|
101 |
+
"step": 100
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.58,
|
105 |
+
"grad_norm": 38.720149993896484,
|
106 |
+
"learning_rate": 4.035087719298246e-06,
|
107 |
+
"loss": 1.6187,
|
108 |
+
"step": 110
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.63,
|
112 |
+
"grad_norm": 51.675872802734375,
|
113 |
+
"learning_rate": 3.947368421052632e-06,
|
114 |
+
"loss": 1.4811,
|
115 |
+
"step": 120
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.68,
|
119 |
+
"grad_norm": 33.777587890625,
|
120 |
+
"learning_rate": 3.859649122807018e-06,
|
121 |
+
"loss": 1.3875,
|
122 |
+
"step": 130
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.74,
|
126 |
+
"grad_norm": 25.40624237060547,
|
127 |
+
"learning_rate": 3.7719298245614037e-06,
|
128 |
+
"loss": 1.1301,
|
129 |
+
"step": 140
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.79,
|
133 |
+
"grad_norm": 30.72103500366211,
|
134 |
+
"learning_rate": 3.6842105263157896e-06,
|
135 |
+
"loss": 0.9115,
|
136 |
+
"step": 150
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.79,
|
140 |
+
"eval_accuracy": 0.7720685111989459,
|
141 |
+
"eval_f1_macro": 0.7139330965236713,
|
142 |
+
"eval_f1_micro": 0.7720685111989459,
|
143 |
+
"eval_loss": 0.9063529372215271,
|
144 |
+
"eval_runtime": 70.8238,
|
145 |
+
"eval_samples_per_second": 21.433,
|
146 |
+
"eval_steps_per_second": 0.339,
|
147 |
+
"step": 150
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.84,
|
151 |
+
"grad_norm": 47.277923583984375,
|
152 |
+
"learning_rate": 3.596491228070176e-06,
|
153 |
+
"loss": 0.8274,
|
154 |
+
"step": 160
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.89,
|
158 |
+
"grad_norm": 34.87353515625,
|
159 |
+
"learning_rate": 3.5087719298245615e-06,
|
160 |
+
"loss": 0.9087,
|
161 |
+
"step": 170
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.95,
|
165 |
+
"grad_norm": 33.74974060058594,
|
166 |
+
"learning_rate": 3.421052631578948e-06,
|
167 |
+
"loss": 0.8381,
|
168 |
+
"step": 180
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 1.0,
|
172 |
+
"grad_norm": 30.923776626586914,
|
173 |
+
"learning_rate": 3.3333333333333333e-06,
|
174 |
+
"loss": 0.8215,
|
175 |
+
"step": 190
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 1.05,
|
179 |
+
"grad_norm": 30.552841186523438,
|
180 |
+
"learning_rate": 3.2456140350877197e-06,
|
181 |
+
"loss": 0.7251,
|
182 |
+
"step": 200
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.05,
|
186 |
+
"eval_accuracy": 0.8089591567852438,
|
187 |
+
"eval_f1_macro": 0.7669219918531099,
|
188 |
+
"eval_f1_micro": 0.8089591567852438,
|
189 |
+
"eval_loss": 0.7033617496490479,
|
190 |
+
"eval_runtime": 70.8095,
|
191 |
+
"eval_samples_per_second": 21.438,
|
192 |
+
"eval_steps_per_second": 0.339,
|
193 |
+
"step": 200
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 1.11,
|
197 |
+
"grad_norm": 40.9909553527832,
|
198 |
+
"learning_rate": 3.157894736842105e-06,
|
199 |
+
"loss": 0.6617,
|
200 |
+
"step": 210
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 1.16,
|
204 |
+
"grad_norm": 22.532026290893555,
|
205 |
+
"learning_rate": 3.0701754385964915e-06,
|
206 |
+
"loss": 0.6655,
|
207 |
+
"step": 220
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 1.21,
|
211 |
+
"grad_norm": 22.03099250793457,
|
212 |
+
"learning_rate": 2.9824561403508774e-06,
|
213 |
+
"loss": 0.6155,
|
214 |
+
"step": 230
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 1.26,
|
218 |
+
"grad_norm": 31.129398345947266,
|
219 |
+
"learning_rate": 2.8947368421052634e-06,
|
220 |
+
"loss": 0.5786,
|
221 |
+
"step": 240
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 1.32,
|
225 |
+
"grad_norm": 22.806337356567383,
|
226 |
+
"learning_rate": 2.8070175438596493e-06,
|
227 |
+
"loss": 0.5086,
|
228 |
+
"step": 250
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 1.32,
|
232 |
+
"eval_accuracy": 0.8267457180500659,
|
233 |
+
"eval_f1_macro": 0.7755720185959084,
|
234 |
+
"eval_f1_micro": 0.8267457180500659,
|
235 |
+
"eval_loss": 0.6432034373283386,
|
236 |
+
"eval_runtime": 70.864,
|
237 |
+
"eval_samples_per_second": 21.421,
|
238 |
+
"eval_steps_per_second": 0.339,
|
239 |
+
"step": 250
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 1.37,
|
243 |
+
"grad_norm": 24.898916244506836,
|
244 |
+
"learning_rate": 2.7192982456140356e-06,
|
245 |
+
"loss": 0.537,
|
246 |
+
"step": 260
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 1.42,
|
250 |
+
"grad_norm": 33.29705047607422,
|
251 |
+
"learning_rate": 2.631578947368421e-06,
|
252 |
+
"loss": 0.5357,
|
253 |
+
"step": 270
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 1.47,
|
257 |
+
"grad_norm": 20.23432159423828,
|
258 |
+
"learning_rate": 2.5438596491228075e-06,
|
259 |
+
"loss": 0.5452,
|
260 |
+
"step": 280
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 1.53,
|
264 |
+
"grad_norm": 26.38104820251465,
|
265 |
+
"learning_rate": 2.456140350877193e-06,
|
266 |
+
"loss": 0.5015,
|
267 |
+
"step": 290
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 1.58,
|
271 |
+
"grad_norm": 23.257266998291016,
|
272 |
+
"learning_rate": 2.368421052631579e-06,
|
273 |
+
"loss": 0.5473,
|
274 |
+
"step": 300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 1.58,
|
278 |
+
"eval_accuracy": 0.8353096179183136,
|
279 |
+
"eval_f1_macro": 0.7982776447477468,
|
280 |
+
"eval_f1_micro": 0.8353096179183136,
|
281 |
+
"eval_loss": 0.591135561466217,
|
282 |
+
"eval_runtime": 70.7822,
|
283 |
+
"eval_samples_per_second": 21.446,
|
284 |
+
"eval_steps_per_second": 0.339,
|
285 |
+
"step": 300
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 1.63,
|
289 |
+
"grad_norm": 31.060453414916992,
|
290 |
+
"learning_rate": 2.280701754385965e-06,
|
291 |
+
"loss": 0.5914,
|
292 |
+
"step": 310
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 1.68,
|
296 |
+
"grad_norm": 38.224273681640625,
|
297 |
+
"learning_rate": 2.192982456140351e-06,
|
298 |
+
"loss": 0.547,
|
299 |
+
"step": 320
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 1.74,
|
303 |
+
"grad_norm": 24.825180053710938,
|
304 |
+
"learning_rate": 2.105263157894737e-06,
|
305 |
+
"loss": 0.5009,
|
306 |
+
"step": 330
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 1.79,
|
310 |
+
"grad_norm": 33.94304656982422,
|
311 |
+
"learning_rate": 2.017543859649123e-06,
|
312 |
+
"loss": 0.607,
|
313 |
+
"step": 340
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 1.84,
|
317 |
+
"grad_norm": 47.21768569946289,
|
318 |
+
"learning_rate": 1.929824561403509e-06,
|
319 |
+
"loss": 0.514,
|
320 |
+
"step": 350
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 1.84,
|
324 |
+
"eval_accuracy": 0.8563899868247694,
|
325 |
+
"eval_f1_macro": 0.8328616425942686,
|
326 |
+
"eval_f1_micro": 0.8563899868247694,
|
327 |
+
"eval_loss": 0.5453721880912781,
|
328 |
+
"eval_runtime": 70.8148,
|
329 |
+
"eval_samples_per_second": 21.436,
|
330 |
+
"eval_steps_per_second": 0.339,
|
331 |
+
"step": 350
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.89,
|
335 |
+
"grad_norm": 22.25798797607422,
|
336 |
+
"learning_rate": 1.8421052631578948e-06,
|
337 |
+
"loss": 0.4804,
|
338 |
+
"step": 360
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.95,
|
342 |
+
"grad_norm": 25.627458572387695,
|
343 |
+
"learning_rate": 1.7543859649122807e-06,
|
344 |
+
"loss": 0.5387,
|
345 |
+
"step": 370
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.0,
|
349 |
+
"grad_norm": 26.785030364990234,
|
350 |
+
"learning_rate": 1.6666666666666667e-06,
|
351 |
+
"loss": 0.5375,
|
352 |
+
"step": 380
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 2.05,
|
356 |
+
"grad_norm": 24.151248931884766,
|
357 |
+
"learning_rate": 1.5789473684210526e-06,
|
358 |
+
"loss": 0.4375,
|
359 |
+
"step": 390
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 2.11,
|
363 |
+
"grad_norm": 31.1235408782959,
|
364 |
+
"learning_rate": 1.4912280701754387e-06,
|
365 |
+
"loss": 0.4493,
|
366 |
+
"step": 400
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 2.11,
|
370 |
+
"eval_accuracy": 0.8465085638998683,
|
371 |
+
"eval_f1_macro": 0.817214362989291,
|
372 |
+
"eval_f1_micro": 0.8465085638998683,
|
373 |
+
"eval_loss": 0.5436841249465942,
|
374 |
+
"eval_runtime": 70.7986,
|
375 |
+
"eval_samples_per_second": 21.441,
|
376 |
+
"eval_steps_per_second": 0.339,
|
377 |
+
"step": 400
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 2.16,
|
381 |
+
"grad_norm": 24.023176193237305,
|
382 |
+
"learning_rate": 1.4035087719298246e-06,
|
383 |
+
"loss": 0.4135,
|
384 |
+
"step": 410
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 2.21,
|
388 |
+
"grad_norm": 29.59303092956543,
|
389 |
+
"learning_rate": 1.3157894736842106e-06,
|
390 |
+
"loss": 0.4725,
|
391 |
+
"step": 420
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 2.26,
|
395 |
+
"grad_norm": 26.1127872467041,
|
396 |
+
"learning_rate": 1.2280701754385965e-06,
|
397 |
+
"loss": 0.3891,
|
398 |
+
"step": 430
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 2.32,
|
402 |
+
"grad_norm": 30.481605529785156,
|
403 |
+
"learning_rate": 1.1403508771929824e-06,
|
404 |
+
"loss": 0.4042,
|
405 |
+
"step": 440
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 2.37,
|
409 |
+
"grad_norm": 22.664913177490234,
|
410 |
+
"learning_rate": 1.0526315789473685e-06,
|
411 |
+
"loss": 0.516,
|
412 |
+
"step": 450
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"epoch": 2.37,
|
416 |
+
"eval_accuracy": 0.8530961791831357,
|
417 |
+
"eval_f1_macro": 0.828913306836084,
|
418 |
+
"eval_f1_micro": 0.8530961791831357,
|
419 |
+
"eval_loss": 0.5225136876106262,
|
420 |
+
"eval_runtime": 70.8455,
|
421 |
+
"eval_samples_per_second": 21.427,
|
422 |
+
"eval_steps_per_second": 0.339,
|
423 |
+
"step": 450
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 2.42,
|
427 |
+
"grad_norm": 27.753475189208984,
|
428 |
+
"learning_rate": 9.649122807017545e-07,
|
429 |
+
"loss": 0.3435,
|
430 |
+
"step": 460
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 2.47,
|
434 |
+
"grad_norm": 28.056856155395508,
|
435 |
+
"learning_rate": 8.771929824561404e-07,
|
436 |
+
"loss": 0.4159,
|
437 |
+
"step": 470
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 2.53,
|
441 |
+
"grad_norm": 28.235706329345703,
|
442 |
+
"learning_rate": 7.894736842105263e-07,
|
443 |
+
"loss": 0.44,
|
444 |
+
"step": 480
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 2.58,
|
448 |
+
"grad_norm": 19.392196655273438,
|
449 |
+
"learning_rate": 7.017543859649123e-07,
|
450 |
+
"loss": 0.3991,
|
451 |
+
"step": 490
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 2.63,
|
455 |
+
"grad_norm": 24.779186248779297,
|
456 |
+
"learning_rate": 6.140350877192982e-07,
|
457 |
+
"loss": 0.343,
|
458 |
+
"step": 500
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 2.63,
|
462 |
+
"eval_accuracy": 0.8557312252964426,
|
463 |
+
"eval_f1_macro": 0.8339166245745164,
|
464 |
+
"eval_f1_micro": 0.8557312252964426,
|
465 |
+
"eval_loss": 0.4982321560382843,
|
466 |
+
"eval_runtime": 70.8133,
|
467 |
+
"eval_samples_per_second": 21.437,
|
468 |
+
"eval_steps_per_second": 0.339,
|
469 |
+
"step": 500
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 2.68,
|
473 |
+
"grad_norm": 21.358295440673828,
|
474 |
+
"learning_rate": 5.263157894736843e-07,
|
475 |
+
"loss": 0.3543,
|
476 |
+
"step": 510
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 2.74,
|
480 |
+
"grad_norm": 26.393150329589844,
|
481 |
+
"learning_rate": 4.385964912280702e-07,
|
482 |
+
"loss": 0.4026,
|
483 |
+
"step": 520
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 2.79,
|
487 |
+
"grad_norm": 26.136310577392578,
|
488 |
+
"learning_rate": 3.5087719298245616e-07,
|
489 |
+
"loss": 0.3974,
|
490 |
+
"step": 530
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 2.84,
|
494 |
+
"grad_norm": 20.45792579650879,
|
495 |
+
"learning_rate": 2.6315789473684213e-07,
|
496 |
+
"loss": 0.4142,
|
497 |
+
"step": 540
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 2.89,
|
501 |
+
"grad_norm": 24.060897827148438,
|
502 |
+
"learning_rate": 1.7543859649122808e-07,
|
503 |
+
"loss": 0.4203,
|
504 |
+
"step": 550
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 2.89,
|
508 |
+
"eval_accuracy": 0.8596837944664032,
|
509 |
+
"eval_f1_macro": 0.8369626014217448,
|
510 |
+
"eval_f1_micro": 0.8596837944664032,
|
511 |
+
"eval_loss": 0.4968219995498657,
|
512 |
+
"eval_runtime": 70.7643,
|
513 |
+
"eval_samples_per_second": 21.452,
|
514 |
+
"eval_steps_per_second": 0.339,
|
515 |
+
"step": 550
|
516 |
+
}
|
517 |
+
],
|
518 |
+
"logging_steps": 10,
|
519 |
+
"max_steps": 570,
|
520 |
+
"num_input_tokens_seen": 0,
|
521 |
+
"num_train_epochs": 3,
|
522 |
+
"save_steps": 50,
|
523 |
+
"total_flos": 7.34953687000023e+17,
|
524 |
+
"train_batch_size": 32,
|
525 |
+
"trial_name": null,
|
526 |
+
"trial_params": null
|
527 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c352945f05514abeccc19c517e1b0f3bc31de7dfc5f7a93d0b302ba8e6938bcf
|
3 |
+
size 6008
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/eval_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8596837944664032,
|
4 |
+
"eval_f1_macro": 0.8369626014217448,
|
5 |
+
"eval_f1_micro": 0.8596837944664032,
|
6 |
+
"eval_loss": 0.4968219995498657,
|
7 |
+
"eval_runtime": 69.9894,
|
8 |
+
"eval_samples": 1518,
|
9 |
+
"eval_samples_per_second": 21.689,
|
10 |
+
"eval_steps_per_second": 0.343
|
11 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/run.log
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
03/25/2024 02:21:11 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False
|
2 |
+
03/25/2024 02:21:11 - WARNING - __main__ - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, 16-bits training: False
|
3 |
+
03/25/2024 02:21:39 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
|
4 |
+
03/25/2024 02:21:39 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/test_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"test_accuracy": 0.8656126482213439,
|
4 |
+
"test_f1_macro": 0.8325216055106754,
|
5 |
+
"test_f1_micro": 0.8656126482213439,
|
6 |
+
"test_loss": 0.4752732813358307,
|
7 |
+
"test_runtime": 71.3407,
|
8 |
+
"test_samples_per_second": 21.278,
|
9 |
+
"test_steps_per_second": 0.336
|
10 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 1.5545654296875,
|
4 |
+
"train_runtime": 6735.4111,
|
5 |
+
"train_samples": 12144,
|
6 |
+
"train_samples_per_second": 5.409,
|
7 |
+
"train_steps_per_second": 0.085
|
8 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/trainer_state.json
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.4968219995498657,
|
3 |
+
"best_model_checkpoint": "../experiments_checkpoints/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/checkpoint-550",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 570,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.05,
|
13 |
+
"grad_norm": 78.0635757446289,
|
14 |
+
"learning_rate": 4.912280701754386e-06,
|
15 |
+
"loss": 11.5813,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.11,
|
20 |
+
"grad_norm": 72.21075439453125,
|
21 |
+
"learning_rate": 4.824561403508772e-06,
|
22 |
+
"loss": 9.4297,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.16,
|
27 |
+
"grad_norm": 67.49365997314453,
|
28 |
+
"learning_rate": 4.736842105263158e-06,
|
29 |
+
"loss": 8.2891,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.21,
|
34 |
+
"grad_norm": 66.80319213867188,
|
35 |
+
"learning_rate": 4.649122807017544e-06,
|
36 |
+
"loss": 6.8797,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.26,
|
41 |
+
"grad_norm": 65.08647155761719,
|
42 |
+
"learning_rate": 4.56140350877193e-06,
|
43 |
+
"loss": 5.8578,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.26,
|
48 |
+
"eval_accuracy": 0.1251646903820817,
|
49 |
+
"eval_f1_macro": 0.09680804168971274,
|
50 |
+
"eval_f1_micro": 0.1251646903820817,
|
51 |
+
"eval_loss": 5.503664493560791,
|
52 |
+
"eval_runtime": 70.8056,
|
53 |
+
"eval_samples_per_second": 21.439,
|
54 |
+
"eval_steps_per_second": 0.339,
|
55 |
+
"step": 50
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.32,
|
59 |
+
"grad_norm": 56.8034553527832,
|
60 |
+
"learning_rate": 4.473684210526316e-06,
|
61 |
+
"loss": 5.1516,
|
62 |
+
"step": 60
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.37,
|
66 |
+
"grad_norm": 48.72732925415039,
|
67 |
+
"learning_rate": 4.385964912280702e-06,
|
68 |
+
"loss": 4.1211,
|
69 |
+
"step": 70
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.42,
|
73 |
+
"grad_norm": 52.9466667175293,
|
74 |
+
"learning_rate": 4.298245614035088e-06,
|
75 |
+
"loss": 3.4531,
|
76 |
+
"step": 80
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.47,
|
80 |
+
"grad_norm": 52.9542350769043,
|
81 |
+
"learning_rate": 4.210526315789474e-06,
|
82 |
+
"loss": 2.9504,
|
83 |
+
"step": 90
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.53,
|
87 |
+
"grad_norm": 49.08361053466797,
|
88 |
+
"learning_rate": 4.12280701754386e-06,
|
89 |
+
"loss": 2.3145,
|
90 |
+
"step": 100
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.53,
|
94 |
+
"eval_accuracy": 0.52832674571805,
|
95 |
+
"eval_f1_macro": 0.4222235273845894,
|
96 |
+
"eval_f1_micro": 0.52832674571805,
|
97 |
+
"eval_loss": 1.9804636240005493,
|
98 |
+
"eval_runtime": 70.8343,
|
99 |
+
"eval_samples_per_second": 21.43,
|
100 |
+
"eval_steps_per_second": 0.339,
|
101 |
+
"step": 100
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.58,
|
105 |
+
"grad_norm": 38.720149993896484,
|
106 |
+
"learning_rate": 4.035087719298246e-06,
|
107 |
+
"loss": 1.6187,
|
108 |
+
"step": 110
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.63,
|
112 |
+
"grad_norm": 51.675872802734375,
|
113 |
+
"learning_rate": 3.947368421052632e-06,
|
114 |
+
"loss": 1.4811,
|
115 |
+
"step": 120
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.68,
|
119 |
+
"grad_norm": 33.777587890625,
|
120 |
+
"learning_rate": 3.859649122807018e-06,
|
121 |
+
"loss": 1.3875,
|
122 |
+
"step": 130
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.74,
|
126 |
+
"grad_norm": 25.40624237060547,
|
127 |
+
"learning_rate": 3.7719298245614037e-06,
|
128 |
+
"loss": 1.1301,
|
129 |
+
"step": 140
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.79,
|
133 |
+
"grad_norm": 30.72103500366211,
|
134 |
+
"learning_rate": 3.6842105263157896e-06,
|
135 |
+
"loss": 0.9115,
|
136 |
+
"step": 150
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.79,
|
140 |
+
"eval_accuracy": 0.7720685111989459,
|
141 |
+
"eval_f1_macro": 0.7139330965236713,
|
142 |
+
"eval_f1_micro": 0.7720685111989459,
|
143 |
+
"eval_loss": 0.9063529372215271,
|
144 |
+
"eval_runtime": 70.8238,
|
145 |
+
"eval_samples_per_second": 21.433,
|
146 |
+
"eval_steps_per_second": 0.339,
|
147 |
+
"step": 150
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.84,
|
151 |
+
"grad_norm": 47.277923583984375,
|
152 |
+
"learning_rate": 3.596491228070176e-06,
|
153 |
+
"loss": 0.8274,
|
154 |
+
"step": 160
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.89,
|
158 |
+
"grad_norm": 34.87353515625,
|
159 |
+
"learning_rate": 3.5087719298245615e-06,
|
160 |
+
"loss": 0.9087,
|
161 |
+
"step": 170
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.95,
|
165 |
+
"grad_norm": 33.74974060058594,
|
166 |
+
"learning_rate": 3.421052631578948e-06,
|
167 |
+
"loss": 0.8381,
|
168 |
+
"step": 180
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 1.0,
|
172 |
+
"grad_norm": 30.923776626586914,
|
173 |
+
"learning_rate": 3.3333333333333333e-06,
|
174 |
+
"loss": 0.8215,
|
175 |
+
"step": 190
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 1.05,
|
179 |
+
"grad_norm": 30.552841186523438,
|
180 |
+
"learning_rate": 3.2456140350877197e-06,
|
181 |
+
"loss": 0.7251,
|
182 |
+
"step": 200
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.05,
|
186 |
+
"eval_accuracy": 0.8089591567852438,
|
187 |
+
"eval_f1_macro": 0.7669219918531099,
|
188 |
+
"eval_f1_micro": 0.8089591567852438,
|
189 |
+
"eval_loss": 0.7033617496490479,
|
190 |
+
"eval_runtime": 70.8095,
|
191 |
+
"eval_samples_per_second": 21.438,
|
192 |
+
"eval_steps_per_second": 0.339,
|
193 |
+
"step": 200
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 1.11,
|
197 |
+
"grad_norm": 40.9909553527832,
|
198 |
+
"learning_rate": 3.157894736842105e-06,
|
199 |
+
"loss": 0.6617,
|
200 |
+
"step": 210
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 1.16,
|
204 |
+
"grad_norm": 22.532026290893555,
|
205 |
+
"learning_rate": 3.0701754385964915e-06,
|
206 |
+
"loss": 0.6655,
|
207 |
+
"step": 220
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 1.21,
|
211 |
+
"grad_norm": 22.03099250793457,
|
212 |
+
"learning_rate": 2.9824561403508774e-06,
|
213 |
+
"loss": 0.6155,
|
214 |
+
"step": 230
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 1.26,
|
218 |
+
"grad_norm": 31.129398345947266,
|
219 |
+
"learning_rate": 2.8947368421052634e-06,
|
220 |
+
"loss": 0.5786,
|
221 |
+
"step": 240
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 1.32,
|
225 |
+
"grad_norm": 22.806337356567383,
|
226 |
+
"learning_rate": 2.8070175438596493e-06,
|
227 |
+
"loss": 0.5086,
|
228 |
+
"step": 250
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 1.32,
|
232 |
+
"eval_accuracy": 0.8267457180500659,
|
233 |
+
"eval_f1_macro": 0.7755720185959084,
|
234 |
+
"eval_f1_micro": 0.8267457180500659,
|
235 |
+
"eval_loss": 0.6432034373283386,
|
236 |
+
"eval_runtime": 70.864,
|
237 |
+
"eval_samples_per_second": 21.421,
|
238 |
+
"eval_steps_per_second": 0.339,
|
239 |
+
"step": 250
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 1.37,
|
243 |
+
"grad_norm": 24.898916244506836,
|
244 |
+
"learning_rate": 2.7192982456140356e-06,
|
245 |
+
"loss": 0.537,
|
246 |
+
"step": 260
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 1.42,
|
250 |
+
"grad_norm": 33.29705047607422,
|
251 |
+
"learning_rate": 2.631578947368421e-06,
|
252 |
+
"loss": 0.5357,
|
253 |
+
"step": 270
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 1.47,
|
257 |
+
"grad_norm": 20.23432159423828,
|
258 |
+
"learning_rate": 2.5438596491228075e-06,
|
259 |
+
"loss": 0.5452,
|
260 |
+
"step": 280
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 1.53,
|
264 |
+
"grad_norm": 26.38104820251465,
|
265 |
+
"learning_rate": 2.456140350877193e-06,
|
266 |
+
"loss": 0.5015,
|
267 |
+
"step": 290
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 1.58,
|
271 |
+
"grad_norm": 23.257266998291016,
|
272 |
+
"learning_rate": 2.368421052631579e-06,
|
273 |
+
"loss": 0.5473,
|
274 |
+
"step": 300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 1.58,
|
278 |
+
"eval_accuracy": 0.8353096179183136,
|
279 |
+
"eval_f1_macro": 0.7982776447477468,
|
280 |
+
"eval_f1_micro": 0.8353096179183136,
|
281 |
+
"eval_loss": 0.591135561466217,
|
282 |
+
"eval_runtime": 70.7822,
|
283 |
+
"eval_samples_per_second": 21.446,
|
284 |
+
"eval_steps_per_second": 0.339,
|
285 |
+
"step": 300
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 1.63,
|
289 |
+
"grad_norm": 31.060453414916992,
|
290 |
+
"learning_rate": 2.280701754385965e-06,
|
291 |
+
"loss": 0.5914,
|
292 |
+
"step": 310
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 1.68,
|
296 |
+
"grad_norm": 38.224273681640625,
|
297 |
+
"learning_rate": 2.192982456140351e-06,
|
298 |
+
"loss": 0.547,
|
299 |
+
"step": 320
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 1.74,
|
303 |
+
"grad_norm": 24.825180053710938,
|
304 |
+
"learning_rate": 2.105263157894737e-06,
|
305 |
+
"loss": 0.5009,
|
306 |
+
"step": 330
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 1.79,
|
310 |
+
"grad_norm": 33.94304656982422,
|
311 |
+
"learning_rate": 2.017543859649123e-06,
|
312 |
+
"loss": 0.607,
|
313 |
+
"step": 340
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 1.84,
|
317 |
+
"grad_norm": 47.21768569946289,
|
318 |
+
"learning_rate": 1.929824561403509e-06,
|
319 |
+
"loss": 0.514,
|
320 |
+
"step": 350
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 1.84,
|
324 |
+
"eval_accuracy": 0.8563899868247694,
|
325 |
+
"eval_f1_macro": 0.8328616425942686,
|
326 |
+
"eval_f1_micro": 0.8563899868247694,
|
327 |
+
"eval_loss": 0.5453721880912781,
|
328 |
+
"eval_runtime": 70.8148,
|
329 |
+
"eval_samples_per_second": 21.436,
|
330 |
+
"eval_steps_per_second": 0.339,
|
331 |
+
"step": 350
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.89,
|
335 |
+
"grad_norm": 22.25798797607422,
|
336 |
+
"learning_rate": 1.8421052631578948e-06,
|
337 |
+
"loss": 0.4804,
|
338 |
+
"step": 360
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.95,
|
342 |
+
"grad_norm": 25.627458572387695,
|
343 |
+
"learning_rate": 1.7543859649122807e-06,
|
344 |
+
"loss": 0.5387,
|
345 |
+
"step": 370
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.0,
|
349 |
+
"grad_norm": 26.785030364990234,
|
350 |
+
"learning_rate": 1.6666666666666667e-06,
|
351 |
+
"loss": 0.5375,
|
352 |
+
"step": 380
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 2.05,
|
356 |
+
"grad_norm": 24.151248931884766,
|
357 |
+
"learning_rate": 1.5789473684210526e-06,
|
358 |
+
"loss": 0.4375,
|
359 |
+
"step": 390
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 2.11,
|
363 |
+
"grad_norm": 31.1235408782959,
|
364 |
+
"learning_rate": 1.4912280701754387e-06,
|
365 |
+
"loss": 0.4493,
|
366 |
+
"step": 400
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 2.11,
|
370 |
+
"eval_accuracy": 0.8465085638998683,
|
371 |
+
"eval_f1_macro": 0.817214362989291,
|
372 |
+
"eval_f1_micro": 0.8465085638998683,
|
373 |
+
"eval_loss": 0.5436841249465942,
|
374 |
+
"eval_runtime": 70.7986,
|
375 |
+
"eval_samples_per_second": 21.441,
|
376 |
+
"eval_steps_per_second": 0.339,
|
377 |
+
"step": 400
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 2.16,
|
381 |
+
"grad_norm": 24.023176193237305,
|
382 |
+
"learning_rate": 1.4035087719298246e-06,
|
383 |
+
"loss": 0.4135,
|
384 |
+
"step": 410
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 2.21,
|
388 |
+
"grad_norm": 29.59303092956543,
|
389 |
+
"learning_rate": 1.3157894736842106e-06,
|
390 |
+
"loss": 0.4725,
|
391 |
+
"step": 420
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 2.26,
|
395 |
+
"grad_norm": 26.1127872467041,
|
396 |
+
"learning_rate": 1.2280701754385965e-06,
|
397 |
+
"loss": 0.3891,
|
398 |
+
"step": 430
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 2.32,
|
402 |
+
"grad_norm": 30.481605529785156,
|
403 |
+
"learning_rate": 1.1403508771929824e-06,
|
404 |
+
"loss": 0.4042,
|
405 |
+
"step": 440
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 2.37,
|
409 |
+
"grad_norm": 22.664913177490234,
|
410 |
+
"learning_rate": 1.0526315789473685e-06,
|
411 |
+
"loss": 0.516,
|
412 |
+
"step": 450
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"epoch": 2.37,
|
416 |
+
"eval_accuracy": 0.8530961791831357,
|
417 |
+
"eval_f1_macro": 0.828913306836084,
|
418 |
+
"eval_f1_micro": 0.8530961791831357,
|
419 |
+
"eval_loss": 0.5225136876106262,
|
420 |
+
"eval_runtime": 70.8455,
|
421 |
+
"eval_samples_per_second": 21.427,
|
422 |
+
"eval_steps_per_second": 0.339,
|
423 |
+
"step": 450
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 2.42,
|
427 |
+
"grad_norm": 27.753475189208984,
|
428 |
+
"learning_rate": 9.649122807017545e-07,
|
429 |
+
"loss": 0.3435,
|
430 |
+
"step": 460
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 2.47,
|
434 |
+
"grad_norm": 28.056856155395508,
|
435 |
+
"learning_rate": 8.771929824561404e-07,
|
436 |
+
"loss": 0.4159,
|
437 |
+
"step": 470
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 2.53,
|
441 |
+
"grad_norm": 28.235706329345703,
|
442 |
+
"learning_rate": 7.894736842105263e-07,
|
443 |
+
"loss": 0.44,
|
444 |
+
"step": 480
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 2.58,
|
448 |
+
"grad_norm": 19.392196655273438,
|
449 |
+
"learning_rate": 7.017543859649123e-07,
|
450 |
+
"loss": 0.3991,
|
451 |
+
"step": 490
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 2.63,
|
455 |
+
"grad_norm": 24.779186248779297,
|
456 |
+
"learning_rate": 6.140350877192982e-07,
|
457 |
+
"loss": 0.343,
|
458 |
+
"step": 500
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 2.63,
|
462 |
+
"eval_accuracy": 0.8557312252964426,
|
463 |
+
"eval_f1_macro": 0.8339166245745164,
|
464 |
+
"eval_f1_micro": 0.8557312252964426,
|
465 |
+
"eval_loss": 0.4982321560382843,
|
466 |
+
"eval_runtime": 70.8133,
|
467 |
+
"eval_samples_per_second": 21.437,
|
468 |
+
"eval_steps_per_second": 0.339,
|
469 |
+
"step": 500
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 2.68,
|
473 |
+
"grad_norm": 21.358295440673828,
|
474 |
+
"learning_rate": 5.263157894736843e-07,
|
475 |
+
"loss": 0.3543,
|
476 |
+
"step": 510
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 2.74,
|
480 |
+
"grad_norm": 26.393150329589844,
|
481 |
+
"learning_rate": 4.385964912280702e-07,
|
482 |
+
"loss": 0.4026,
|
483 |
+
"step": 520
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 2.79,
|
487 |
+
"grad_norm": 26.136310577392578,
|
488 |
+
"learning_rate": 3.5087719298245616e-07,
|
489 |
+
"loss": 0.3974,
|
490 |
+
"step": 530
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 2.84,
|
494 |
+
"grad_norm": 20.45792579650879,
|
495 |
+
"learning_rate": 2.6315789473684213e-07,
|
496 |
+
"loss": 0.4142,
|
497 |
+
"step": 540
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 2.89,
|
501 |
+
"grad_norm": 24.060897827148438,
|
502 |
+
"learning_rate": 1.7543859649122808e-07,
|
503 |
+
"loss": 0.4203,
|
504 |
+
"step": 550
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 2.89,
|
508 |
+
"eval_accuracy": 0.8596837944664032,
|
509 |
+
"eval_f1_macro": 0.8369626014217448,
|
510 |
+
"eval_f1_micro": 0.8596837944664032,
|
511 |
+
"eval_loss": 0.4968219995498657,
|
512 |
+
"eval_runtime": 70.7643,
|
513 |
+
"eval_samples_per_second": 21.452,
|
514 |
+
"eval_steps_per_second": 0.339,
|
515 |
+
"step": 550
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 2.95,
|
519 |
+
"grad_norm": 21.141916275024414,
|
520 |
+
"learning_rate": 8.771929824561404e-08,
|
521 |
+
"loss": 0.4682,
|
522 |
+
"step": 560
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 3.0,
|
526 |
+
"grad_norm": 26.661828994750977,
|
527 |
+
"learning_rate": 0.0,
|
528 |
+
"loss": 0.4384,
|
529 |
+
"step": 570
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 3.0,
|
533 |
+
"step": 570,
|
534 |
+
"total_flos": 7.616792756182057e+17,
|
535 |
+
"train_loss": 1.5545654296875,
|
536 |
+
"train_runtime": 6735.4111,
|
537 |
+
"train_samples_per_second": 5.409,
|
538 |
+
"train_steps_per_second": 0.085
|
539 |
+
}
|
540 |
+
],
|
541 |
+
"logging_steps": 10,
|
542 |
+
"max_steps": 570,
|
543 |
+
"num_input_tokens_seen": 0,
|
544 |
+
"num_train_epochs": 3,
|
545 |
+
"save_steps": 50,
|
546 |
+
"total_flos": 7.616792756182057e+17,
|
547 |
+
"train_batch_size": 32,
|
548 |
+
"trial_name": null,
|
549 |
+
"trial_params": null
|
550 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c352945f05514abeccc19c517e1b0f3bc31de7dfc5f7a93d0b302ba8e6938bcf
|
3 |
+
size 6008
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt_default/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: Qwen/Qwen1.5-7B
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: twitter_disaster_default
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# twitter_disaster_default
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7973
|
22 |
+
- Accuracy: 0.7151
|
23 |
+
- F1 Macro: 0.6612
|
24 |
+
- F1 Micro: 0.7151
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-06
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- distributed_type: multi-GPU
|
48 |
+
- num_devices: 2
|
49 |
+
- total_train_batch_size: 64
|
50 |
+
- total_eval_batch_size: 64
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 3.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
|
59 |
+
| 1.0791 | 0.37 | 50 | 1.3147 | 0.6765 | 0.6068 | 0.6765 |
|
60 |
+
| 0.8888 | 0.74 | 100 | 1.0283 | 0.6884 | 0.6494 | 0.6884 |
|
61 |
+
| 0.6325 | 1.1 | 150 | 0.8961 | 0.6912 | 0.6240 | 0.6912 |
|
62 |
+
| 0.7378 | 1.47 | 200 | 0.8683 | 0.7105 | 0.6437 | 0.7105 |
|
63 |
+
| 0.5979 | 1.84 | 250 | 0.8460 | 0.7243 | 0.6393 | 0.7243 |
|
64 |
+
| 0.4513 | 2.21 | 300 | 0.8070 | 0.7142 | 0.6592 | 0.7142 |
|
65 |
+
| 0.5699 | 2.57 | 350 | 0.8001 | 0.7114 | 0.6636 | 0.7114 |
|
66 |
+
| 0.4189 | 2.94 | 400 | 0.7973 | 0.7151 | 0.6612 | 0.7151 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- PEFT 0.9.0
|
72 |
+
- Transformers 4.39.0.dev0
|
73 |
+
- Pytorch 2.2.1+cu121
|
74 |
+
- Datasets 2.18.0
|
75 |
+
- Tokenizers 0.15.2
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen1.5-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.0,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 128,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"o_proj",
|
23 |
+
"q_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"v_proj",
|
26 |
+
"k_proj",
|
27 |
+
"down_proj",
|
28 |
+
"up_proj"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2597662e929c041bde6c94fcb1ef7b879f93c6a81c59504a0f9450cc504d3753
|
3 |
+
size 1882088146
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/all_results.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.7150735294117647,
|
4 |
+
"eval_f1_macro": 0.6611572572705318,
|
5 |
+
"eval_f1_micro": 0.7150735294117647,
|
6 |
+
"eval_loss": 0.7973345518112183,
|
7 |
+
"eval_runtime": 49.6177,
|
8 |
+
"eval_samples": 1088,
|
9 |
+
"eval_samples_per_second": 21.928,
|
10 |
+
"eval_steps_per_second": 0.343,
|
11 |
+
"test_accuracy": 0.7417279411764706,
|
12 |
+
"test_f1_macro": 0.6892802878238908,
|
13 |
+
"test_f1_micro": 0.7417279411764706,
|
14 |
+
"test_loss": 0.7253561615943909,
|
15 |
+
"test_runtime": 51.0672,
|
16 |
+
"test_samples_per_second": 21.305,
|
17 |
+
"test_steps_per_second": 0.333,
|
18 |
+
"train_loss": 0.7515426336550245,
|
19 |
+
"train_runtime": 4685.4738,
|
20 |
+
"train_samples": 8700,
|
21 |
+
"train_samples_per_second": 5.57,
|
22 |
+
"train_steps_per_second": 0.087
|
23 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen1.5-7B
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen1.5-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.0,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 128,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"o_proj",
|
23 |
+
"q_proj",
|
24 |
+
"gate_proj",
|
25 |
+
"v_proj",
|
26 |
+
"k_proj",
|
27 |
+
"down_proj",
|
28 |
+
"up_proj"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2597662e929c041bde6c94fcb1ef7b879f93c6a81c59504a0f9450cc504d3753
|
3 |
+
size 1882088146
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/global_step400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f31a3ada65c23868f51012d3b6043f0a51210668a988ebf13af85c5c8d071f98
|
3 |
+
size 1918971376
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/global_step400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:808d47ea51a83854ffa8c9308cfb08212c5e1f9fa8efe01304d240d6ef81555a
|
3 |
+
size 1918971504
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/global_step400/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60f953adf8ae05c2c89096dc7d063d8b4b40f73ddc6c7dabc46c014ca9d2aee4
|
3 |
+
size 639974444
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step400
|
max_seq_length_512_experiments/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster_default/checkpoint-400/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|