Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +10 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/README.md +89 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/adapter_config.json +33 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/adapter_model.bin +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/added_tokens.json +5 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/all_results.json +23 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/README.md +202 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/adapter_config.json +33 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/adapter_model.bin +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/added_tokens.json +5 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/global_step350/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/global_step350/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/global_step350/mp_rank_00_model_states.pt +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/latest +1 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/merges.txt +0 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/rng_state_0.pth +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/rng_state_1.pth +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/scheduler.pt +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/special_tokens_map.json +14 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/tokenizer.json +0 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/tokenizer_config.json +43 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/trainer_state.json +343 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/training_args.bin +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/vocab.json +0 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/zero_to_fp32.py +604 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/eval_results.json +11 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/merges.txt +0 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/run.log +4 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/special_tokens_map.json +14 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/test_results.json +10 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/tokenizer.json +0 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/tokenizer_config.json +43 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/train_results.json +8 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/trainer_state.json +1070 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/training_args.bin +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/vocab.json +0 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/README.md +83 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/adapter_config.json +33 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/adapter_model.bin +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/added_tokens.json +5 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/all_results.json +23 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/README.md +202 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/adapter_config.json +33 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/adapter_model.bin +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/added_tokens.json +5 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/global_step250/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/global_step250/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/global_step250/mp_rank_00_model_states.pt +3 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/latest +1 -0
- LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/merges.txt +0 -0
.gitattributes
CHANGED
@@ -43,3 +43,13 @@ google/gemma_2b_scotus/checkpoint-300/tokenizer.json filter=lfs diff=lfs merge=l
|
|
43 |
google/gemma_2b_scotus/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
44 |
google/gemma_2b_twitter/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
45 |
google/gemma_2b_twitter/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
google/gemma_2b_scotus/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
44 |
google/gemma_2b_twitter/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
45 |
google/gemma_2b_twitter/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
46 |
+
LoRA/google/gemma_7b_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-750/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
47 |
+
LoRA/google/gemma_7b_LoRA_MAdAiLab/amazon_attrprompt/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
48 |
+
LoRA/google/gemma_7b_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
49 |
+
LoRA/google/gemma_7b_LoRA_MAdAiLab/twitter_disaster/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
50 |
+
LoRA/google/gemma_7b_LoRA_ccdv/patent_classification_abstract/checkpoint-1400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
51 |
+
LoRA/google/gemma_7b_LoRA_ccdv/patent_classification_abstract/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
52 |
+
LoRA/google/gemma_7b_LoRA_coastalcph/lex_glue_ledgar/checkpoint-3700/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
53 |
+
LoRA/google/gemma_7b_LoRA_coastalcph/lex_glue_ledgar/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
54 |
+
LoRA/google/gemma_7b_LoRA_coastalcph/lex_glue_scotus/checkpoint-450/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
55 |
+
LoRA/google/gemma_7b_LoRA_coastalcph/lex_glue_scotus/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: Qwen/Qwen1.5-7B
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: amazon_attrprompt
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# amazon_attrprompt
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4250
|
22 |
+
- Accuracy: 0.8709
|
23 |
+
- F1 Macro: 0.8541
|
24 |
+
- F1 Micro: 0.8709
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- distributed_type: multi-GPU
|
48 |
+
- num_devices: 2
|
49 |
+
- total_train_batch_size: 32
|
50 |
+
- total_eval_batch_size: 32
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 3.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
|
59 |
+
| 1.6833 | 0.13 | 50 | 1.2279 | 0.6640 | 0.5879 | 0.6640 |
|
60 |
+
| 0.6531 | 0.26 | 100 | 0.6578 | 0.8155 | 0.7767 | 0.8155 |
|
61 |
+
| 0.6075 | 0.39 | 150 | 0.5935 | 0.8327 | 0.8113 | 0.8327 |
|
62 |
+
| 0.5646 | 0.53 | 200 | 0.5660 | 0.8379 | 0.8194 | 0.8379 |
|
63 |
+
| 0.6148 | 0.66 | 250 | 0.5318 | 0.8426 | 0.8319 | 0.8426 |
|
64 |
+
| 0.4047 | 0.79 | 300 | 0.4546 | 0.8650 | 0.8467 | 0.8650 |
|
65 |
+
| 0.568 | 0.92 | 350 | 0.4250 | 0.8709 | 0.8541 | 0.8709 |
|
66 |
+
| 0.2395 | 1.05 | 400 | 0.4570 | 0.8762 | 0.8611 | 0.8762 |
|
67 |
+
| 0.2213 | 1.18 | 450 | 0.4524 | 0.8775 | 0.8631 | 0.8775 |
|
68 |
+
| 0.1778 | 1.32 | 500 | 0.4649 | 0.8748 | 0.8508 | 0.8748 |
|
69 |
+
| 0.1738 | 1.45 | 550 | 0.4853 | 0.8794 | 0.8617 | 0.8794 |
|
70 |
+
| 0.2643 | 1.58 | 600 | 0.4302 | 0.8827 | 0.8676 | 0.8827 |
|
71 |
+
| 0.3357 | 1.71 | 650 | 0.4388 | 0.8827 | 0.8673 | 0.8827 |
|
72 |
+
| 0.3029 | 1.84 | 700 | 0.4431 | 0.8827 | 0.8656 | 0.8827 |
|
73 |
+
| 0.1809 | 1.97 | 750 | 0.4266 | 0.8900 | 0.8742 | 0.8900 |
|
74 |
+
| 0.0589 | 2.11 | 800 | 0.4499 | 0.8946 | 0.8815 | 0.8946 |
|
75 |
+
| 0.0531 | 2.24 | 850 | 0.4758 | 0.8920 | 0.8758 | 0.8920 |
|
76 |
+
| 0.0234 | 2.37 | 900 | 0.4788 | 0.8953 | 0.8804 | 0.8953 |
|
77 |
+
| 0.0145 | 2.5 | 950 | 0.4976 | 0.8939 | 0.8779 | 0.8939 |
|
78 |
+
| 0.058 | 2.63 | 1000 | 0.4967 | 0.8992 | 0.8816 | 0.8992 |
|
79 |
+
| 0.05 | 2.76 | 1050 | 0.5113 | 0.8933 | 0.8753 | 0.8933 |
|
80 |
+
| 0.0556 | 2.89 | 1100 | 0.5024 | 0.8966 | 0.8803 | 0.8966 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- PEFT 0.9.0
|
86 |
+
- Transformers 4.39.0.dev0
|
87 |
+
- Pytorch 2.2.1+cu121
|
88 |
+
- Datasets 2.18.0
|
89 |
+
- Tokenizers 0.15.2
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen1.5-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 128,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"o_proj",
|
23 |
+
"v_proj",
|
24 |
+
"q_proj",
|
25 |
+
"down_proj",
|
26 |
+
"k_proj",
|
27 |
+
"up_proj",
|
28 |
+
"gate_proj"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd7a062e5f54abbe183ffc004af744d6b392306c42e0a9361e709f5ee210f6a1
|
3 |
+
size 1882260178
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/all_results.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8708827404479579,
|
4 |
+
"eval_f1_macro": 0.8540867659285116,
|
5 |
+
"eval_f1_micro": 0.8708827404479579,
|
6 |
+
"eval_loss": 0.42495009303092957,
|
7 |
+
"eval_runtime": 18.5363,
|
8 |
+
"eval_samples": 1518,
|
9 |
+
"eval_samples_per_second": 81.893,
|
10 |
+
"eval_steps_per_second": 2.59,
|
11 |
+
"test_accuracy": 0.8787878787878788,
|
12 |
+
"test_f1_macro": 0.8592526000275965,
|
13 |
+
"test_f1_micro": 0.8787878787878788,
|
14 |
+
"test_loss": 0.4176747500896454,
|
15 |
+
"test_runtime": 18.7826,
|
16 |
+
"test_samples_per_second": 80.82,
|
17 |
+
"test_steps_per_second": 2.556,
|
18 |
+
"train_loss": 0.48372833394167714,
|
19 |
+
"train_runtime": 1860.5106,
|
20 |
+
"train_samples": 12144,
|
21 |
+
"train_samples_per_second": 19.582,
|
22 |
+
"train_steps_per_second": 0.613
|
23 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen1.5-7B
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen1.5-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 128,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"o_proj",
|
23 |
+
"v_proj",
|
24 |
+
"q_proj",
|
25 |
+
"down_proj",
|
26 |
+
"k_proj",
|
27 |
+
"up_proj",
|
28 |
+
"gate_proj"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd7a062e5f54abbe183ffc004af744d6b392306c42e0a9361e709f5ee210f6a1
|
3 |
+
size 1882260178
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/global_step350/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1331ee472a3bb3b5c75befdbaa87ce114569684e7e2dc4aaba5be969d65aa55
|
3 |
+
size 1919487472
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/global_step350/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:556daff7ae35ddc09de810d220383d9c830438789751d565e2afa1289f8eb12d
|
3 |
+
size 1919487600
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/global_step350/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:533e7a2b9d300977594023b037f52411c969287ffccd2ca72745454822bcedfe
|
3 |
+
size 640146476
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step350
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1bf511f6e62a4ac4d0dcff2abdca4aafd83da0347b48962eb7a4450af95587f
|
3 |
+
size 14512
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6f7e6176606e470603dae75d8a0b1345f81b06321b18f2dac42a33fe19eec3b
|
3 |
+
size 14512
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72c981663971b3602dc2dedc7aef262e19f3e64556be6dd4800b987af7759a5b
|
3 |
+
size 1064
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/trainer_state.json
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.42495009303092957,
|
3 |
+
"best_model_checkpoint": "../experiments_checkpoints/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350",
|
4 |
+
"epoch": 0.9210526315789473,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 350,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"grad_norm": 88.5622329711914,
|
14 |
+
"learning_rate": 4.956140350877193e-05,
|
15 |
+
"loss": 9.8375,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05,
|
20 |
+
"grad_norm": 76.16983032226562,
|
21 |
+
"learning_rate": 4.912280701754386e-05,
|
22 |
+
"loss": 6.3422,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.08,
|
27 |
+
"grad_norm": 68.94097137451172,
|
28 |
+
"learning_rate": 4.868421052631579e-05,
|
29 |
+
"loss": 3.866,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.11,
|
34 |
+
"grad_norm": 72.53247833251953,
|
35 |
+
"learning_rate": 4.824561403508772e-05,
|
36 |
+
"loss": 2.1033,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.13,
|
41 |
+
"grad_norm": 67.55592346191406,
|
42 |
+
"learning_rate": 4.780701754385965e-05,
|
43 |
+
"loss": 1.6833,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.13,
|
48 |
+
"eval_accuracy": 0.6640316205533597,
|
49 |
+
"eval_f1_macro": 0.5878963576218975,
|
50 |
+
"eval_f1_micro": 0.6640316205533597,
|
51 |
+
"eval_loss": 1.2279417514801025,
|
52 |
+
"eval_runtime": 19.0551,
|
53 |
+
"eval_samples_per_second": 79.664,
|
54 |
+
"eval_steps_per_second": 2.519,
|
55 |
+
"step": 50
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.16,
|
59 |
+
"grad_norm": 34.1900520324707,
|
60 |
+
"learning_rate": 4.736842105263158e-05,
|
61 |
+
"loss": 1.0584,
|
62 |
+
"step": 60
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.18,
|
66 |
+
"grad_norm": 48.36394119262695,
|
67 |
+
"learning_rate": 4.6929824561403515e-05,
|
68 |
+
"loss": 1.0168,
|
69 |
+
"step": 70
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.21,
|
73 |
+
"grad_norm": 46.12382888793945,
|
74 |
+
"learning_rate": 4.649122807017544e-05,
|
75 |
+
"loss": 0.8845,
|
76 |
+
"step": 80
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.24,
|
80 |
+
"grad_norm": 43.66932678222656,
|
81 |
+
"learning_rate": 4.605263157894737e-05,
|
82 |
+
"loss": 0.8027,
|
83 |
+
"step": 90
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.26,
|
87 |
+
"grad_norm": 28.10245132446289,
|
88 |
+
"learning_rate": 4.56140350877193e-05,
|
89 |
+
"loss": 0.6531,
|
90 |
+
"step": 100
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.26,
|
94 |
+
"eval_accuracy": 0.8155467720685112,
|
95 |
+
"eval_f1_macro": 0.7766571443103144,
|
96 |
+
"eval_f1_micro": 0.8155467720685112,
|
97 |
+
"eval_loss": 0.6577733755111694,
|
98 |
+
"eval_runtime": 19.1186,
|
99 |
+
"eval_samples_per_second": 79.399,
|
100 |
+
"eval_steps_per_second": 2.511,
|
101 |
+
"step": 100
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.29,
|
105 |
+
"grad_norm": 59.69050216674805,
|
106 |
+
"learning_rate": 4.517543859649123e-05,
|
107 |
+
"loss": 0.8677,
|
108 |
+
"step": 110
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.32,
|
112 |
+
"grad_norm": 56.882625579833984,
|
113 |
+
"learning_rate": 4.473684210526316e-05,
|
114 |
+
"loss": 0.7174,
|
115 |
+
"step": 120
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.34,
|
119 |
+
"grad_norm": 29.96848487854004,
|
120 |
+
"learning_rate": 4.429824561403509e-05,
|
121 |
+
"loss": 0.5984,
|
122 |
+
"step": 130
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.37,
|
126 |
+
"grad_norm": 53.101444244384766,
|
127 |
+
"learning_rate": 4.3859649122807014e-05,
|
128 |
+
"loss": 0.5318,
|
129 |
+
"step": 140
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.39,
|
133 |
+
"grad_norm": 30.550228118896484,
|
134 |
+
"learning_rate": 4.342105263157895e-05,
|
135 |
+
"loss": 0.6075,
|
136 |
+
"step": 150
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.39,
|
140 |
+
"eval_accuracy": 0.8326745718050066,
|
141 |
+
"eval_f1_macro": 0.8113232244484544,
|
142 |
+
"eval_f1_micro": 0.8326745718050066,
|
143 |
+
"eval_loss": 0.5934926867485046,
|
144 |
+
"eval_runtime": 19.1445,
|
145 |
+
"eval_samples_per_second": 79.292,
|
146 |
+
"eval_steps_per_second": 2.507,
|
147 |
+
"step": 150
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.42,
|
151 |
+
"grad_norm": 47.42914581298828,
|
152 |
+
"learning_rate": 4.298245614035088e-05,
|
153 |
+
"loss": 0.7186,
|
154 |
+
"step": 160
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.45,
|
158 |
+
"grad_norm": 34.166526794433594,
|
159 |
+
"learning_rate": 4.254385964912281e-05,
|
160 |
+
"loss": 0.7026,
|
161 |
+
"step": 170
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.47,
|
165 |
+
"grad_norm": 28.214841842651367,
|
166 |
+
"learning_rate": 4.210526315789474e-05,
|
167 |
+
"loss": 0.6292,
|
168 |
+
"step": 180
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.5,
|
172 |
+
"grad_norm": 45.511444091796875,
|
173 |
+
"learning_rate": 4.166666666666667e-05,
|
174 |
+
"loss": 0.7115,
|
175 |
+
"step": 190
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.53,
|
179 |
+
"grad_norm": 18.114608764648438,
|
180 |
+
"learning_rate": 4.12280701754386e-05,
|
181 |
+
"loss": 0.5646,
|
182 |
+
"step": 200
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.53,
|
186 |
+
"eval_accuracy": 0.8379446640316206,
|
187 |
+
"eval_f1_macro": 0.8193854450487876,
|
188 |
+
"eval_f1_micro": 0.8379446640316206,
|
189 |
+
"eval_loss": 0.5659688115119934,
|
190 |
+
"eval_runtime": 19.1468,
|
191 |
+
"eval_samples_per_second": 79.282,
|
192 |
+
"eval_steps_per_second": 2.507,
|
193 |
+
"step": 200
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.55,
|
197 |
+
"grad_norm": 29.09646987915039,
|
198 |
+
"learning_rate": 4.078947368421053e-05,
|
199 |
+
"loss": 0.4866,
|
200 |
+
"step": 210
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.58,
|
204 |
+
"grad_norm": 44.29309844970703,
|
205 |
+
"learning_rate": 4.0350877192982455e-05,
|
206 |
+
"loss": 0.4314,
|
207 |
+
"step": 220
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.61,
|
211 |
+
"grad_norm": 42.93623733520508,
|
212 |
+
"learning_rate": 3.991228070175439e-05,
|
213 |
+
"loss": 0.7159,
|
214 |
+
"step": 230
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.63,
|
218 |
+
"grad_norm": 33.71025848388672,
|
219 |
+
"learning_rate": 3.9473684210526316e-05,
|
220 |
+
"loss": 0.6136,
|
221 |
+
"step": 240
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.66,
|
225 |
+
"grad_norm": 42.2908821105957,
|
226 |
+
"learning_rate": 3.9035087719298244e-05,
|
227 |
+
"loss": 0.6148,
|
228 |
+
"step": 250
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.66,
|
232 |
+
"eval_accuracy": 0.8425559947299077,
|
233 |
+
"eval_f1_macro": 0.8319363334583545,
|
234 |
+
"eval_f1_micro": 0.8425559947299077,
|
235 |
+
"eval_loss": 0.531785249710083,
|
236 |
+
"eval_runtime": 19.145,
|
237 |
+
"eval_samples_per_second": 79.29,
|
238 |
+
"eval_steps_per_second": 2.507,
|
239 |
+
"step": 250
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.68,
|
243 |
+
"grad_norm": 38.71971130371094,
|
244 |
+
"learning_rate": 3.859649122807018e-05,
|
245 |
+
"loss": 0.582,
|
246 |
+
"step": 260
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 0.71,
|
250 |
+
"grad_norm": 21.194923400878906,
|
251 |
+
"learning_rate": 3.815789473684211e-05,
|
252 |
+
"loss": 0.5039,
|
253 |
+
"step": 270
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.74,
|
257 |
+
"grad_norm": 47.179935455322266,
|
258 |
+
"learning_rate": 3.771929824561404e-05,
|
259 |
+
"loss": 0.5564,
|
260 |
+
"step": 280
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.76,
|
264 |
+
"grad_norm": 34.193275451660156,
|
265 |
+
"learning_rate": 3.728070175438597e-05,
|
266 |
+
"loss": 0.452,
|
267 |
+
"step": 290
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.79,
|
271 |
+
"grad_norm": 20.546531677246094,
|
272 |
+
"learning_rate": 3.6842105263157895e-05,
|
273 |
+
"loss": 0.4047,
|
274 |
+
"step": 300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.79,
|
278 |
+
"eval_accuracy": 0.8649538866930171,
|
279 |
+
"eval_f1_macro": 0.8467453346863307,
|
280 |
+
"eval_f1_micro": 0.8649538866930171,
|
281 |
+
"eval_loss": 0.4545969069004059,
|
282 |
+
"eval_runtime": 19.151,
|
283 |
+
"eval_samples_per_second": 79.265,
|
284 |
+
"eval_steps_per_second": 2.506,
|
285 |
+
"step": 300
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.82,
|
289 |
+
"grad_norm": 46.09516525268555,
|
290 |
+
"learning_rate": 3.640350877192983e-05,
|
291 |
+
"loss": 0.4348,
|
292 |
+
"step": 310
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.84,
|
296 |
+
"grad_norm": 35.31401443481445,
|
297 |
+
"learning_rate": 3.5964912280701756e-05,
|
298 |
+
"loss": 0.5397,
|
299 |
+
"step": 320
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.87,
|
303 |
+
"grad_norm": 22.361942291259766,
|
304 |
+
"learning_rate": 3.5526315789473684e-05,
|
305 |
+
"loss": 0.5323,
|
306 |
+
"step": 330
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.89,
|
310 |
+
"grad_norm": 42.461910247802734,
|
311 |
+
"learning_rate": 3.508771929824561e-05,
|
312 |
+
"loss": 0.5028,
|
313 |
+
"step": 340
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.92,
|
317 |
+
"grad_norm": 35.93864059448242,
|
318 |
+
"learning_rate": 3.4649122807017546e-05,
|
319 |
+
"loss": 0.568,
|
320 |
+
"step": 350
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.92,
|
324 |
+
"eval_accuracy": 0.8708827404479579,
|
325 |
+
"eval_f1_macro": 0.8540867659285116,
|
326 |
+
"eval_f1_micro": 0.8708827404479579,
|
327 |
+
"eval_loss": 0.42495009303092957,
|
328 |
+
"eval_runtime": 19.1783,
|
329 |
+
"eval_samples_per_second": 79.152,
|
330 |
+
"eval_steps_per_second": 2.503,
|
331 |
+
"step": 350
|
332 |
+
}
|
333 |
+
],
|
334 |
+
"logging_steps": 10,
|
335 |
+
"max_steps": 1140,
|
336 |
+
"num_input_tokens_seen": 0,
|
337 |
+
"num_train_epochs": 3,
|
338 |
+
"save_steps": 50,
|
339 |
+
"total_flos": 5.846222510227456e+16,
|
340 |
+
"train_batch_size": 16,
|
341 |
+
"trial_name": null,
|
342 |
+
"trial_params": null
|
343 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95b4a5adabb844b5e8347d17e6ffdbb68778d8d70412e41fe9f46cfcf73b127d
|
3 |
+
size 6008
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/eval_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8708827404479579,
|
4 |
+
"eval_f1_macro": 0.8540867659285116,
|
5 |
+
"eval_f1_micro": 0.8708827404479579,
|
6 |
+
"eval_loss": 0.42495009303092957,
|
7 |
+
"eval_runtime": 18.5363,
|
8 |
+
"eval_samples": 1518,
|
9 |
+
"eval_samples_per_second": 81.893,
|
10 |
+
"eval_steps_per_second": 2.59
|
11 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/run.log
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
03/18/2024 19:06:24 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False
|
2 |
+
03/18/2024 19:06:24 - WARNING - __main__ - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, 16-bits training: False
|
3 |
+
03/18/2024 19:06:46 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
|
4 |
+
03/18/2024 19:06:46 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/test_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"test_accuracy": 0.8787878787878788,
|
4 |
+
"test_f1_macro": 0.8592526000275965,
|
5 |
+
"test_f1_micro": 0.8787878787878788,
|
6 |
+
"test_loss": 0.4176747500896454,
|
7 |
+
"test_runtime": 18.7826,
|
8 |
+
"test_samples_per_second": 80.82,
|
9 |
+
"test_steps_per_second": 2.556
|
10 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.48372833394167714,
|
4 |
+
"train_runtime": 1860.5106,
|
5 |
+
"train_samples": 12144,
|
6 |
+
"train_samples_per_second": 19.582,
|
7 |
+
"train_steps_per_second": 0.613
|
8 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/trainer_state.json
ADDED
@@ -0,0 +1,1070 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.42495009303092957,
|
3 |
+
"best_model_checkpoint": "../experiments_checkpoints/LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/checkpoint-350",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 1140,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"grad_norm": 88.5622329711914,
|
14 |
+
"learning_rate": 4.956140350877193e-05,
|
15 |
+
"loss": 9.8375,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05,
|
20 |
+
"grad_norm": 76.16983032226562,
|
21 |
+
"learning_rate": 4.912280701754386e-05,
|
22 |
+
"loss": 6.3422,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.08,
|
27 |
+
"grad_norm": 68.94097137451172,
|
28 |
+
"learning_rate": 4.868421052631579e-05,
|
29 |
+
"loss": 3.866,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.11,
|
34 |
+
"grad_norm": 72.53247833251953,
|
35 |
+
"learning_rate": 4.824561403508772e-05,
|
36 |
+
"loss": 2.1033,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.13,
|
41 |
+
"grad_norm": 67.55592346191406,
|
42 |
+
"learning_rate": 4.780701754385965e-05,
|
43 |
+
"loss": 1.6833,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.13,
|
48 |
+
"eval_accuracy": 0.6640316205533597,
|
49 |
+
"eval_f1_macro": 0.5878963576218975,
|
50 |
+
"eval_f1_micro": 0.6640316205533597,
|
51 |
+
"eval_loss": 1.2279417514801025,
|
52 |
+
"eval_runtime": 19.0551,
|
53 |
+
"eval_samples_per_second": 79.664,
|
54 |
+
"eval_steps_per_second": 2.519,
|
55 |
+
"step": 50
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.16,
|
59 |
+
"grad_norm": 34.1900520324707,
|
60 |
+
"learning_rate": 4.736842105263158e-05,
|
61 |
+
"loss": 1.0584,
|
62 |
+
"step": 60
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.18,
|
66 |
+
"grad_norm": 48.36394119262695,
|
67 |
+
"learning_rate": 4.6929824561403515e-05,
|
68 |
+
"loss": 1.0168,
|
69 |
+
"step": 70
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.21,
|
73 |
+
"grad_norm": 46.12382888793945,
|
74 |
+
"learning_rate": 4.649122807017544e-05,
|
75 |
+
"loss": 0.8845,
|
76 |
+
"step": 80
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.24,
|
80 |
+
"grad_norm": 43.66932678222656,
|
81 |
+
"learning_rate": 4.605263157894737e-05,
|
82 |
+
"loss": 0.8027,
|
83 |
+
"step": 90
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.26,
|
87 |
+
"grad_norm": 28.10245132446289,
|
88 |
+
"learning_rate": 4.56140350877193e-05,
|
89 |
+
"loss": 0.6531,
|
90 |
+
"step": 100
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.26,
|
94 |
+
"eval_accuracy": 0.8155467720685112,
|
95 |
+
"eval_f1_macro": 0.7766571443103144,
|
96 |
+
"eval_f1_micro": 0.8155467720685112,
|
97 |
+
"eval_loss": 0.6577733755111694,
|
98 |
+
"eval_runtime": 19.1186,
|
99 |
+
"eval_samples_per_second": 79.399,
|
100 |
+
"eval_steps_per_second": 2.511,
|
101 |
+
"step": 100
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.29,
|
105 |
+
"grad_norm": 59.69050216674805,
|
106 |
+
"learning_rate": 4.517543859649123e-05,
|
107 |
+
"loss": 0.8677,
|
108 |
+
"step": 110
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.32,
|
112 |
+
"grad_norm": 56.882625579833984,
|
113 |
+
"learning_rate": 4.473684210526316e-05,
|
114 |
+
"loss": 0.7174,
|
115 |
+
"step": 120
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.34,
|
119 |
+
"grad_norm": 29.96848487854004,
|
120 |
+
"learning_rate": 4.429824561403509e-05,
|
121 |
+
"loss": 0.5984,
|
122 |
+
"step": 130
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.37,
|
126 |
+
"grad_norm": 53.101444244384766,
|
127 |
+
"learning_rate": 4.3859649122807014e-05,
|
128 |
+
"loss": 0.5318,
|
129 |
+
"step": 140
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.39,
|
133 |
+
"grad_norm": 30.550228118896484,
|
134 |
+
"learning_rate": 4.342105263157895e-05,
|
135 |
+
"loss": 0.6075,
|
136 |
+
"step": 150
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.39,
|
140 |
+
"eval_accuracy": 0.8326745718050066,
|
141 |
+
"eval_f1_macro": 0.8113232244484544,
|
142 |
+
"eval_f1_micro": 0.8326745718050066,
|
143 |
+
"eval_loss": 0.5934926867485046,
|
144 |
+
"eval_runtime": 19.1445,
|
145 |
+
"eval_samples_per_second": 79.292,
|
146 |
+
"eval_steps_per_second": 2.507,
|
147 |
+
"step": 150
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.42,
|
151 |
+
"grad_norm": 47.42914581298828,
|
152 |
+
"learning_rate": 4.298245614035088e-05,
|
153 |
+
"loss": 0.7186,
|
154 |
+
"step": 160
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.45,
|
158 |
+
"grad_norm": 34.166526794433594,
|
159 |
+
"learning_rate": 4.254385964912281e-05,
|
160 |
+
"loss": 0.7026,
|
161 |
+
"step": 170
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.47,
|
165 |
+
"grad_norm": 28.214841842651367,
|
166 |
+
"learning_rate": 4.210526315789474e-05,
|
167 |
+
"loss": 0.6292,
|
168 |
+
"step": 180
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 0.5,
|
172 |
+
"grad_norm": 45.511444091796875,
|
173 |
+
"learning_rate": 4.166666666666667e-05,
|
174 |
+
"loss": 0.7115,
|
175 |
+
"step": 190
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.53,
|
179 |
+
"grad_norm": 18.114608764648438,
|
180 |
+
"learning_rate": 4.12280701754386e-05,
|
181 |
+
"loss": 0.5646,
|
182 |
+
"step": 200
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.53,
|
186 |
+
"eval_accuracy": 0.8379446640316206,
|
187 |
+
"eval_f1_macro": 0.8193854450487876,
|
188 |
+
"eval_f1_micro": 0.8379446640316206,
|
189 |
+
"eval_loss": 0.5659688115119934,
|
190 |
+
"eval_runtime": 19.1468,
|
191 |
+
"eval_samples_per_second": 79.282,
|
192 |
+
"eval_steps_per_second": 2.507,
|
193 |
+
"step": 200
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.55,
|
197 |
+
"grad_norm": 29.09646987915039,
|
198 |
+
"learning_rate": 4.078947368421053e-05,
|
199 |
+
"loss": 0.4866,
|
200 |
+
"step": 210
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.58,
|
204 |
+
"grad_norm": 44.29309844970703,
|
205 |
+
"learning_rate": 4.0350877192982455e-05,
|
206 |
+
"loss": 0.4314,
|
207 |
+
"step": 220
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.61,
|
211 |
+
"grad_norm": 42.93623733520508,
|
212 |
+
"learning_rate": 3.991228070175439e-05,
|
213 |
+
"loss": 0.7159,
|
214 |
+
"step": 230
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.63,
|
218 |
+
"grad_norm": 33.71025848388672,
|
219 |
+
"learning_rate": 3.9473684210526316e-05,
|
220 |
+
"loss": 0.6136,
|
221 |
+
"step": 240
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.66,
|
225 |
+
"grad_norm": 42.2908821105957,
|
226 |
+
"learning_rate": 3.9035087719298244e-05,
|
227 |
+
"loss": 0.6148,
|
228 |
+
"step": 250
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.66,
|
232 |
+
"eval_accuracy": 0.8425559947299077,
|
233 |
+
"eval_f1_macro": 0.8319363334583545,
|
234 |
+
"eval_f1_micro": 0.8425559947299077,
|
235 |
+
"eval_loss": 0.531785249710083,
|
236 |
+
"eval_runtime": 19.145,
|
237 |
+
"eval_samples_per_second": 79.29,
|
238 |
+
"eval_steps_per_second": 2.507,
|
239 |
+
"step": 250
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.68,
|
243 |
+
"grad_norm": 38.71971130371094,
|
244 |
+
"learning_rate": 3.859649122807018e-05,
|
245 |
+
"loss": 0.582,
|
246 |
+
"step": 260
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 0.71,
|
250 |
+
"grad_norm": 21.194923400878906,
|
251 |
+
"learning_rate": 3.815789473684211e-05,
|
252 |
+
"loss": 0.5039,
|
253 |
+
"step": 270
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.74,
|
257 |
+
"grad_norm": 47.179935455322266,
|
258 |
+
"learning_rate": 3.771929824561404e-05,
|
259 |
+
"loss": 0.5564,
|
260 |
+
"step": 280
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.76,
|
264 |
+
"grad_norm": 34.193275451660156,
|
265 |
+
"learning_rate": 3.728070175438597e-05,
|
266 |
+
"loss": 0.452,
|
267 |
+
"step": 290
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.79,
|
271 |
+
"grad_norm": 20.546531677246094,
|
272 |
+
"learning_rate": 3.6842105263157895e-05,
|
273 |
+
"loss": 0.4047,
|
274 |
+
"step": 300
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 0.79,
|
278 |
+
"eval_accuracy": 0.8649538866930171,
|
279 |
+
"eval_f1_macro": 0.8467453346863307,
|
280 |
+
"eval_f1_micro": 0.8649538866930171,
|
281 |
+
"eval_loss": 0.4545969069004059,
|
282 |
+
"eval_runtime": 19.151,
|
283 |
+
"eval_samples_per_second": 79.265,
|
284 |
+
"eval_steps_per_second": 2.506,
|
285 |
+
"step": 300
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.82,
|
289 |
+
"grad_norm": 46.09516525268555,
|
290 |
+
"learning_rate": 3.640350877192983e-05,
|
291 |
+
"loss": 0.4348,
|
292 |
+
"step": 310
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.84,
|
296 |
+
"grad_norm": 35.31401443481445,
|
297 |
+
"learning_rate": 3.5964912280701756e-05,
|
298 |
+
"loss": 0.5397,
|
299 |
+
"step": 320
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.87,
|
303 |
+
"grad_norm": 22.361942291259766,
|
304 |
+
"learning_rate": 3.5526315789473684e-05,
|
305 |
+
"loss": 0.5323,
|
306 |
+
"step": 330
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.89,
|
310 |
+
"grad_norm": 42.461910247802734,
|
311 |
+
"learning_rate": 3.508771929824561e-05,
|
312 |
+
"loss": 0.5028,
|
313 |
+
"step": 340
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.92,
|
317 |
+
"grad_norm": 35.93864059448242,
|
318 |
+
"learning_rate": 3.4649122807017546e-05,
|
319 |
+
"loss": 0.568,
|
320 |
+
"step": 350
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.92,
|
324 |
+
"eval_accuracy": 0.8708827404479579,
|
325 |
+
"eval_f1_macro": 0.8540867659285116,
|
326 |
+
"eval_f1_micro": 0.8708827404479579,
|
327 |
+
"eval_loss": 0.42495009303092957,
|
328 |
+
"eval_runtime": 19.1783,
|
329 |
+
"eval_samples_per_second": 79.152,
|
330 |
+
"eval_steps_per_second": 2.503,
|
331 |
+
"step": 350
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.95,
|
335 |
+
"grad_norm": 19.8919734954834,
|
336 |
+
"learning_rate": 3.421052631578947e-05,
|
337 |
+
"loss": 0.3863,
|
338 |
+
"step": 360
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.97,
|
342 |
+
"grad_norm": 46.49361801147461,
|
343 |
+
"learning_rate": 3.377192982456141e-05,
|
344 |
+
"loss": 0.5599,
|
345 |
+
"step": 370
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.0,
|
349 |
+
"grad_norm": 31.97792625427246,
|
350 |
+
"learning_rate": 3.3333333333333335e-05,
|
351 |
+
"loss": 0.5042,
|
352 |
+
"step": 380
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.03,
|
356 |
+
"grad_norm": 30.975046157836914,
|
357 |
+
"learning_rate": 3.289473684210527e-05,
|
358 |
+
"loss": 0.3024,
|
359 |
+
"step": 390
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.05,
|
363 |
+
"grad_norm": 14.051041603088379,
|
364 |
+
"learning_rate": 3.24561403508772e-05,
|
365 |
+
"loss": 0.2395,
|
366 |
+
"step": 400
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.05,
|
370 |
+
"eval_accuracy": 0.8761528326745718,
|
371 |
+
"eval_f1_macro": 0.8611335072766768,
|
372 |
+
"eval_f1_micro": 0.8761528326745718,
|
373 |
+
"eval_loss": 0.4569604992866516,
|
374 |
+
"eval_runtime": 19.1561,
|
375 |
+
"eval_samples_per_second": 79.244,
|
376 |
+
"eval_steps_per_second": 2.506,
|
377 |
+
"step": 400
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 1.08,
|
381 |
+
"grad_norm": 28.197834014892578,
|
382 |
+
"learning_rate": 3.2017543859649124e-05,
|
383 |
+
"loss": 0.2336,
|
384 |
+
"step": 410
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 1.11,
|
388 |
+
"grad_norm": 17.73228645324707,
|
389 |
+
"learning_rate": 3.157894736842105e-05,
|
390 |
+
"loss": 0.2069,
|
391 |
+
"step": 420
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 1.13,
|
395 |
+
"grad_norm": 19.042102813720703,
|
396 |
+
"learning_rate": 3.1140350877192986e-05,
|
397 |
+
"loss": 0.3182,
|
398 |
+
"step": 430
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 1.16,
|
402 |
+
"grad_norm": 17.37108039855957,
|
403 |
+
"learning_rate": 3.0701754385964913e-05,
|
404 |
+
"loss": 0.2071,
|
405 |
+
"step": 440
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 1.18,
|
409 |
+
"grad_norm": 17.802289962768555,
|
410 |
+
"learning_rate": 3.0263157894736844e-05,
|
411 |
+
"loss": 0.2213,
|
412 |
+
"step": 450
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"epoch": 1.18,
|
416 |
+
"eval_accuracy": 0.8774703557312253,
|
417 |
+
"eval_f1_macro": 0.8631213514149485,
|
418 |
+
"eval_f1_micro": 0.8774703557312253,
|
419 |
+
"eval_loss": 0.45242956280708313,
|
420 |
+
"eval_runtime": 19.1508,
|
421 |
+
"eval_samples_per_second": 79.266,
|
422 |
+
"eval_steps_per_second": 2.506,
|
423 |
+
"step": 450
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 1.21,
|
427 |
+
"grad_norm": 18.258426666259766,
|
428 |
+
"learning_rate": 2.9824561403508772e-05,
|
429 |
+
"loss": 0.2722,
|
430 |
+
"step": 460
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 1.24,
|
434 |
+
"grad_norm": 24.840511322021484,
|
435 |
+
"learning_rate": 2.9385964912280706e-05,
|
436 |
+
"loss": 0.2721,
|
437 |
+
"step": 470
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 1.26,
|
441 |
+
"grad_norm": 14.744382858276367,
|
442 |
+
"learning_rate": 2.8947368421052634e-05,
|
443 |
+
"loss": 0.2501,
|
444 |
+
"step": 480
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 1.29,
|
448 |
+
"grad_norm": 18.21392250061035,
|
449 |
+
"learning_rate": 2.850877192982456e-05,
|
450 |
+
"loss": 0.2516,
|
451 |
+
"step": 490
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 1.32,
|
455 |
+
"grad_norm": 7.454222679138184,
|
456 |
+
"learning_rate": 2.8070175438596492e-05,
|
457 |
+
"loss": 0.1778,
|
458 |
+
"step": 500
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 1.32,
|
462 |
+
"eval_accuracy": 0.8748353096179183,
|
463 |
+
"eval_f1_macro": 0.8507965490074818,
|
464 |
+
"eval_f1_micro": 0.8748353096179183,
|
465 |
+
"eval_loss": 0.4648575782775879,
|
466 |
+
"eval_runtime": 19.1651,
|
467 |
+
"eval_samples_per_second": 79.207,
|
468 |
+
"eval_steps_per_second": 2.505,
|
469 |
+
"step": 500
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 1.34,
|
473 |
+
"grad_norm": 15.366374969482422,
|
474 |
+
"learning_rate": 2.7631578947368426e-05,
|
475 |
+
"loss": 0.1821,
|
476 |
+
"step": 510
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 1.37,
|
480 |
+
"grad_norm": 17.506078720092773,
|
481 |
+
"learning_rate": 2.7192982456140354e-05,
|
482 |
+
"loss": 0.2568,
|
483 |
+
"step": 520
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 1.39,
|
487 |
+
"grad_norm": 32.42897033691406,
|
488 |
+
"learning_rate": 2.675438596491228e-05,
|
489 |
+
"loss": 0.2519,
|
490 |
+
"step": 530
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 1.42,
|
494 |
+
"grad_norm": 16.54423713684082,
|
495 |
+
"learning_rate": 2.6315789473684212e-05,
|
496 |
+
"loss": 0.1991,
|
497 |
+
"step": 540
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 1.45,
|
501 |
+
"grad_norm": 13.094934463500977,
|
502 |
+
"learning_rate": 2.5877192982456143e-05,
|
503 |
+
"loss": 0.1738,
|
504 |
+
"step": 550
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 1.45,
|
508 |
+
"eval_accuracy": 0.8794466403162056,
|
509 |
+
"eval_f1_macro": 0.8616811925870786,
|
510 |
+
"eval_f1_micro": 0.8794466403162056,
|
511 |
+
"eval_loss": 0.4853415787220001,
|
512 |
+
"eval_runtime": 19.1386,
|
513 |
+
"eval_samples_per_second": 79.316,
|
514 |
+
"eval_steps_per_second": 2.508,
|
515 |
+
"step": 550
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 1.47,
|
519 |
+
"grad_norm": 9.557943344116211,
|
520 |
+
"learning_rate": 2.5438596491228074e-05,
|
521 |
+
"loss": 0.3554,
|
522 |
+
"step": 560
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 1.5,
|
526 |
+
"grad_norm": 20.867530822753906,
|
527 |
+
"learning_rate": 2.5e-05,
|
528 |
+
"loss": 0.2558,
|
529 |
+
"step": 570
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 1.53,
|
533 |
+
"grad_norm": 16.902305603027344,
|
534 |
+
"learning_rate": 2.456140350877193e-05,
|
535 |
+
"loss": 0.2638,
|
536 |
+
"step": 580
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 1.55,
|
540 |
+
"grad_norm": 14.376564979553223,
|
541 |
+
"learning_rate": 2.412280701754386e-05,
|
542 |
+
"loss": 0.1744,
|
543 |
+
"step": 590
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 1.58,
|
547 |
+
"grad_norm": 21.982099533081055,
|
548 |
+
"learning_rate": 2.368421052631579e-05,
|
549 |
+
"loss": 0.2643,
|
550 |
+
"step": 600
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 1.58,
|
554 |
+
"eval_accuracy": 0.8827404479578392,
|
555 |
+
"eval_f1_macro": 0.8675629871629298,
|
556 |
+
"eval_f1_micro": 0.8827404479578392,
|
557 |
+
"eval_loss": 0.43024396896362305,
|
558 |
+
"eval_runtime": 19.1559,
|
559 |
+
"eval_samples_per_second": 79.244,
|
560 |
+
"eval_steps_per_second": 2.506,
|
561 |
+
"step": 600
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 1.61,
|
565 |
+
"grad_norm": 8.151387214660645,
|
566 |
+
"learning_rate": 2.324561403508772e-05,
|
567 |
+
"loss": 0.2679,
|
568 |
+
"step": 610
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 1.63,
|
572 |
+
"grad_norm": 22.84608268737793,
|
573 |
+
"learning_rate": 2.280701754385965e-05,
|
574 |
+
"loss": 0.2687,
|
575 |
+
"step": 620
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 1.66,
|
579 |
+
"grad_norm": 18.665374755859375,
|
580 |
+
"learning_rate": 2.236842105263158e-05,
|
581 |
+
"loss": 0.1821,
|
582 |
+
"step": 630
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"epoch": 1.68,
|
586 |
+
"grad_norm": 16.556060791015625,
|
587 |
+
"learning_rate": 2.1929824561403507e-05,
|
588 |
+
"loss": 0.2583,
|
589 |
+
"step": 640
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 1.71,
|
593 |
+
"grad_norm": 10.120057106018066,
|
594 |
+
"learning_rate": 2.149122807017544e-05,
|
595 |
+
"loss": 0.3357,
|
596 |
+
"step": 650
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 1.71,
|
600 |
+
"eval_accuracy": 0.8827404479578392,
|
601 |
+
"eval_f1_macro": 0.8673002865339278,
|
602 |
+
"eval_f1_micro": 0.8827404479578392,
|
603 |
+
"eval_loss": 0.43883296847343445,
|
604 |
+
"eval_runtime": 19.1504,
|
605 |
+
"eval_samples_per_second": 79.267,
|
606 |
+
"eval_steps_per_second": 2.506,
|
607 |
+
"step": 650
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 1.74,
|
611 |
+
"grad_norm": 27.886629104614258,
|
612 |
+
"learning_rate": 2.105263157894737e-05,
|
613 |
+
"loss": 0.2225,
|
614 |
+
"step": 660
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 1.76,
|
618 |
+
"grad_norm": 17.229507446289062,
|
619 |
+
"learning_rate": 2.06140350877193e-05,
|
620 |
+
"loss": 0.2053,
|
621 |
+
"step": 670
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 1.79,
|
625 |
+
"grad_norm": 33.89767837524414,
|
626 |
+
"learning_rate": 2.0175438596491227e-05,
|
627 |
+
"loss": 0.223,
|
628 |
+
"step": 680
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 1.82,
|
632 |
+
"grad_norm": 12.045727729797363,
|
633 |
+
"learning_rate": 1.9736842105263158e-05,
|
634 |
+
"loss": 0.1707,
|
635 |
+
"step": 690
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 1.84,
|
639 |
+
"grad_norm": 19.970233917236328,
|
640 |
+
"learning_rate": 1.929824561403509e-05,
|
641 |
+
"loss": 0.3029,
|
642 |
+
"step": 700
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 1.84,
|
646 |
+
"eval_accuracy": 0.8827404479578392,
|
647 |
+
"eval_f1_macro": 0.8655521627258196,
|
648 |
+
"eval_f1_micro": 0.8827404479578392,
|
649 |
+
"eval_loss": 0.4430885314941406,
|
650 |
+
"eval_runtime": 19.1338,
|
651 |
+
"eval_samples_per_second": 79.336,
|
652 |
+
"eval_steps_per_second": 2.509,
|
653 |
+
"step": 700
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.87,
|
657 |
+
"grad_norm": 16.294740676879883,
|
658 |
+
"learning_rate": 1.885964912280702e-05,
|
659 |
+
"loss": 0.222,
|
660 |
+
"step": 710
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.89,
|
664 |
+
"grad_norm": 12.050216674804688,
|
665 |
+
"learning_rate": 1.8421052631578947e-05,
|
666 |
+
"loss": 0.2102,
|
667 |
+
"step": 720
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.92,
|
671 |
+
"grad_norm": 21.319595336914062,
|
672 |
+
"learning_rate": 1.7982456140350878e-05,
|
673 |
+
"loss": 0.1974,
|
674 |
+
"step": 730
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.95,
|
678 |
+
"grad_norm": 9.788517951965332,
|
679 |
+
"learning_rate": 1.7543859649122806e-05,
|
680 |
+
"loss": 0.2275,
|
681 |
+
"step": 740
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.97,
|
685 |
+
"grad_norm": 19.825088500976562,
|
686 |
+
"learning_rate": 1.7105263157894737e-05,
|
687 |
+
"loss": 0.1809,
|
688 |
+
"step": 750
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.97,
|
692 |
+
"eval_accuracy": 0.8899868247694335,
|
693 |
+
"eval_f1_macro": 0.874229892393047,
|
694 |
+
"eval_f1_micro": 0.8899868247694335,
|
695 |
+
"eval_loss": 0.42660534381866455,
|
696 |
+
"eval_runtime": 19.1466,
|
697 |
+
"eval_samples_per_second": 79.283,
|
698 |
+
"eval_steps_per_second": 2.507,
|
699 |
+
"step": 750
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 2.0,
|
703 |
+
"grad_norm": 14.426370620727539,
|
704 |
+
"learning_rate": 1.6666666666666667e-05,
|
705 |
+
"loss": 0.1963,
|
706 |
+
"step": 760
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 2.03,
|
710 |
+
"grad_norm": 17.27349281311035,
|
711 |
+
"learning_rate": 1.62280701754386e-05,
|
712 |
+
"loss": 0.1066,
|
713 |
+
"step": 770
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 2.05,
|
717 |
+
"grad_norm": 3.37688946723938,
|
718 |
+
"learning_rate": 1.5789473684210526e-05,
|
719 |
+
"loss": 0.064,
|
720 |
+
"step": 780
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 2.08,
|
724 |
+
"grad_norm": 6.233172416687012,
|
725 |
+
"learning_rate": 1.5350877192982457e-05,
|
726 |
+
"loss": 0.0603,
|
727 |
+
"step": 790
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 2.11,
|
731 |
+
"grad_norm": 17.858177185058594,
|
732 |
+
"learning_rate": 1.4912280701754386e-05,
|
733 |
+
"loss": 0.0589,
|
734 |
+
"step": 800
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 2.11,
|
738 |
+
"eval_accuracy": 0.8945981554677207,
|
739 |
+
"eval_f1_macro": 0.8814951057007789,
|
740 |
+
"eval_f1_micro": 0.8945981554677207,
|
741 |
+
"eval_loss": 0.4498850703239441,
|
742 |
+
"eval_runtime": 19.1446,
|
743 |
+
"eval_samples_per_second": 79.291,
|
744 |
+
"eval_steps_per_second": 2.507,
|
745 |
+
"step": 800
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 2.13,
|
749 |
+
"grad_norm": 10.511329650878906,
|
750 |
+
"learning_rate": 1.4473684210526317e-05,
|
751 |
+
"loss": 0.0526,
|
752 |
+
"step": 810
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 2.16,
|
756 |
+
"grad_norm": 3.655291795730591,
|
757 |
+
"learning_rate": 1.4035087719298246e-05,
|
758 |
+
"loss": 0.0308,
|
759 |
+
"step": 820
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 2.18,
|
763 |
+
"grad_norm": 14.438605308532715,
|
764 |
+
"learning_rate": 1.3596491228070177e-05,
|
765 |
+
"loss": 0.063,
|
766 |
+
"step": 830
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 2.21,
|
770 |
+
"grad_norm": 5.1180195808410645,
|
771 |
+
"learning_rate": 1.3157894736842106e-05,
|
772 |
+
"loss": 0.0297,
|
773 |
+
"step": 840
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 2.24,
|
777 |
+
"grad_norm": 9.131390571594238,
|
778 |
+
"learning_rate": 1.2719298245614037e-05,
|
779 |
+
"loss": 0.0531,
|
780 |
+
"step": 850
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 2.24,
|
784 |
+
"eval_accuracy": 0.8919631093544137,
|
785 |
+
"eval_f1_macro": 0.8757800595234113,
|
786 |
+
"eval_f1_micro": 0.8919631093544137,
|
787 |
+
"eval_loss": 0.475754976272583,
|
788 |
+
"eval_runtime": 19.1667,
|
789 |
+
"eval_samples_per_second": 79.2,
|
790 |
+
"eval_steps_per_second": 2.504,
|
791 |
+
"step": 850
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 2.26,
|
795 |
+
"grad_norm": 0.74644935131073,
|
796 |
+
"learning_rate": 1.2280701754385964e-05,
|
797 |
+
"loss": 0.0649,
|
798 |
+
"step": 860
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 2.29,
|
802 |
+
"grad_norm": 9.349382400512695,
|
803 |
+
"learning_rate": 1.1842105263157895e-05,
|
804 |
+
"loss": 0.0213,
|
805 |
+
"step": 870
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 2.32,
|
809 |
+
"grad_norm": 11.547332763671875,
|
810 |
+
"learning_rate": 1.1403508771929824e-05,
|
811 |
+
"loss": 0.0526,
|
812 |
+
"step": 880
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 2.34,
|
816 |
+
"grad_norm": 4.113059043884277,
|
817 |
+
"learning_rate": 1.0964912280701754e-05,
|
818 |
+
"loss": 0.0187,
|
819 |
+
"step": 890
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 2.37,
|
823 |
+
"grad_norm": 3.626723527908325,
|
824 |
+
"learning_rate": 1.0526315789473684e-05,
|
825 |
+
"loss": 0.0234,
|
826 |
+
"step": 900
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 2.37,
|
830 |
+
"eval_accuracy": 0.8952569169960475,
|
831 |
+
"eval_f1_macro": 0.8803631688376218,
|
832 |
+
"eval_f1_micro": 0.8952569169960475,
|
833 |
+
"eval_loss": 0.47881799936294556,
|
834 |
+
"eval_runtime": 19.145,
|
835 |
+
"eval_samples_per_second": 79.29,
|
836 |
+
"eval_steps_per_second": 2.507,
|
837 |
+
"step": 900
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 2.39,
|
841 |
+
"grad_norm": 11.01301383972168,
|
842 |
+
"learning_rate": 1.0087719298245614e-05,
|
843 |
+
"loss": 0.0655,
|
844 |
+
"step": 910
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 2.42,
|
848 |
+
"grad_norm": 11.407805442810059,
|
849 |
+
"learning_rate": 9.649122807017545e-06,
|
850 |
+
"loss": 0.027,
|
851 |
+
"step": 920
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 2.45,
|
855 |
+
"grad_norm": 1.768430471420288,
|
856 |
+
"learning_rate": 9.210526315789474e-06,
|
857 |
+
"loss": 0.0518,
|
858 |
+
"step": 930
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 2.47,
|
862 |
+
"grad_norm": 20.94036102294922,
|
863 |
+
"learning_rate": 8.771929824561403e-06,
|
864 |
+
"loss": 0.0359,
|
865 |
+
"step": 940
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 2.5,
|
869 |
+
"grad_norm": 1.7965754270553589,
|
870 |
+
"learning_rate": 8.333333333333334e-06,
|
871 |
+
"loss": 0.0145,
|
872 |
+
"step": 950
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 2.5,
|
876 |
+
"eval_accuracy": 0.8939393939393939,
|
877 |
+
"eval_f1_macro": 0.877949638322673,
|
878 |
+
"eval_f1_micro": 0.8939393939393939,
|
879 |
+
"eval_loss": 0.49758803844451904,
|
880 |
+
"eval_runtime": 19.1473,
|
881 |
+
"eval_samples_per_second": 79.28,
|
882 |
+
"eval_steps_per_second": 2.507,
|
883 |
+
"step": 950
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 2.53,
|
887 |
+
"grad_norm": 0.1458648443222046,
|
888 |
+
"learning_rate": 7.894736842105263e-06,
|
889 |
+
"loss": 0.0425,
|
890 |
+
"step": 960
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 2.55,
|
894 |
+
"grad_norm": 11.682854652404785,
|
895 |
+
"learning_rate": 7.456140350877193e-06,
|
896 |
+
"loss": 0.0851,
|
897 |
+
"step": 970
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 2.58,
|
901 |
+
"grad_norm": 1.2510184049606323,
|
902 |
+
"learning_rate": 7.017543859649123e-06,
|
903 |
+
"loss": 0.0299,
|
904 |
+
"step": 980
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 2.61,
|
908 |
+
"grad_norm": 10.715560913085938,
|
909 |
+
"learning_rate": 6.578947368421053e-06,
|
910 |
+
"loss": 0.0678,
|
911 |
+
"step": 990
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 2.63,
|
915 |
+
"grad_norm": 11.586739540100098,
|
916 |
+
"learning_rate": 6.140350877192982e-06,
|
917 |
+
"loss": 0.058,
|
918 |
+
"step": 1000
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 2.63,
|
922 |
+
"eval_accuracy": 0.8992094861660079,
|
923 |
+
"eval_f1_macro": 0.8816426015432036,
|
924 |
+
"eval_f1_micro": 0.8992094861660079,
|
925 |
+
"eval_loss": 0.4966810941696167,
|
926 |
+
"eval_runtime": 19.17,
|
927 |
+
"eval_samples_per_second": 79.186,
|
928 |
+
"eval_steps_per_second": 2.504,
|
929 |
+
"step": 1000
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 2.66,
|
933 |
+
"grad_norm": 1.5098384618759155,
|
934 |
+
"learning_rate": 5.701754385964912e-06,
|
935 |
+
"loss": 0.0287,
|
936 |
+
"step": 1010
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 2.68,
|
940 |
+
"grad_norm": 6.79250955581665,
|
941 |
+
"learning_rate": 5.263157894736842e-06,
|
942 |
+
"loss": 0.0409,
|
943 |
+
"step": 1020
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 2.71,
|
947 |
+
"grad_norm": 2.9859375953674316,
|
948 |
+
"learning_rate": 4.824561403508772e-06,
|
949 |
+
"loss": 0.0379,
|
950 |
+
"step": 1030
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 2.74,
|
954 |
+
"grad_norm": 14.098068237304688,
|
955 |
+
"learning_rate": 4.3859649122807014e-06,
|
956 |
+
"loss": 0.046,
|
957 |
+
"step": 1040
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 2.76,
|
961 |
+
"grad_norm": 10.598516464233398,
|
962 |
+
"learning_rate": 3.9473684210526315e-06,
|
963 |
+
"loss": 0.05,
|
964 |
+
"step": 1050
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 2.76,
|
968 |
+
"eval_accuracy": 0.8932806324110671,
|
969 |
+
"eval_f1_macro": 0.8752583058969902,
|
970 |
+
"eval_f1_micro": 0.8932806324110671,
|
971 |
+
"eval_loss": 0.5112892389297485,
|
972 |
+
"eval_runtime": 19.1422,
|
973 |
+
"eval_samples_per_second": 79.301,
|
974 |
+
"eval_steps_per_second": 2.508,
|
975 |
+
"step": 1050
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 2.79,
|
979 |
+
"grad_norm": 0.23401279747486115,
|
980 |
+
"learning_rate": 3.5087719298245615e-06,
|
981 |
+
"loss": 0.0655,
|
982 |
+
"step": 1060
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 2.82,
|
986 |
+
"grad_norm": 4.760624885559082,
|
987 |
+
"learning_rate": 3.070175438596491e-06,
|
988 |
+
"loss": 0.0659,
|
989 |
+
"step": 1070
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 2.84,
|
993 |
+
"grad_norm": 1.6583623886108398,
|
994 |
+
"learning_rate": 2.631578947368421e-06,
|
995 |
+
"loss": 0.0429,
|
996 |
+
"step": 1080
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 2.87,
|
1000 |
+
"grad_norm": 0.6040318608283997,
|
1001 |
+
"learning_rate": 2.1929824561403507e-06,
|
1002 |
+
"loss": 0.0168,
|
1003 |
+
"step": 1090
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 2.89,
|
1007 |
+
"grad_norm": 11.433518409729004,
|
1008 |
+
"learning_rate": 1.7543859649122807e-06,
|
1009 |
+
"loss": 0.0556,
|
1010 |
+
"step": 1100
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 2.89,
|
1014 |
+
"eval_accuracy": 0.8965744400527009,
|
1015 |
+
"eval_f1_macro": 0.8803498700160407,
|
1016 |
+
"eval_f1_micro": 0.8965744400527009,
|
1017 |
+
"eval_loss": 0.502357542514801,
|
1018 |
+
"eval_runtime": 19.1404,
|
1019 |
+
"eval_samples_per_second": 79.309,
|
1020 |
+
"eval_steps_per_second": 2.508,
|
1021 |
+
"step": 1100
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 2.92,
|
1025 |
+
"grad_norm": 17.50218963623047,
|
1026 |
+
"learning_rate": 1.3157894736842106e-06,
|
1027 |
+
"loss": 0.0795,
|
1028 |
+
"step": 1110
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 2.95,
|
1032 |
+
"grad_norm": 2.289309501647949,
|
1033 |
+
"learning_rate": 8.771929824561404e-07,
|
1034 |
+
"loss": 0.0646,
|
1035 |
+
"step": 1120
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 2.97,
|
1039 |
+
"grad_norm": 16.876842498779297,
|
1040 |
+
"learning_rate": 4.385964912280702e-07,
|
1041 |
+
"loss": 0.0431,
|
1042 |
+
"step": 1130
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 3.0,
|
1046 |
+
"grad_norm": 0.3004974126815796,
|
1047 |
+
"learning_rate": 0.0,
|
1048 |
+
"loss": 0.0419,
|
1049 |
+
"step": 1140
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 3.0,
|
1053 |
+
"step": 1140,
|
1054 |
+
"total_flos": 1.9041981890455142e+17,
|
1055 |
+
"train_loss": 0.48372833394167714,
|
1056 |
+
"train_runtime": 1860.5106,
|
1057 |
+
"train_samples_per_second": 19.582,
|
1058 |
+
"train_steps_per_second": 0.613
|
1059 |
+
}
|
1060 |
+
],
|
1061 |
+
"logging_steps": 10,
|
1062 |
+
"max_steps": 1140,
|
1063 |
+
"num_input_tokens_seen": 0,
|
1064 |
+
"num_train_epochs": 3,
|
1065 |
+
"save_steps": 50,
|
1066 |
+
"total_flos": 1.9041981890455142e+17,
|
1067 |
+
"train_batch_size": 16,
|
1068 |
+
"trial_name": null,
|
1069 |
+
"trial_params": null
|
1070 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95b4a5adabb844b5e8347d17e6ffdbb68778d8d70412e41fe9f46cfcf73b127d
|
3 |
+
size 6008
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/amazon_attrprompt/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: Qwen/Qwen1.5-7B
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: twitter_disaster
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# twitter_disaster
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4902
|
22 |
+
- Accuracy: 0.7767
|
23 |
+
- F1 Macro: 0.7451
|
24 |
+
- F1 Micro: 0.7767
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- distributed_type: multi-GPU
|
48 |
+
- num_devices: 2
|
49 |
+
- total_train_batch_size: 32
|
50 |
+
- total_eval_batch_size: 32
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 3.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
|
59 |
+
| 0.8422 | 0.18 | 50 | 0.6453 | 0.7178 | 0.6372 | 0.7178 |
|
60 |
+
| 0.6082 | 0.37 | 100 | 0.5489 | 0.7472 | 0.7123 | 0.7472 |
|
61 |
+
| 0.4305 | 0.55 | 150 | 0.5572 | 0.7252 | 0.5777 | 0.7252 |
|
62 |
+
| 0.5021 | 0.74 | 200 | 0.5000 | 0.7721 | 0.7437 | 0.7721 |
|
63 |
+
| 0.4715 | 0.92 | 250 | 0.4902 | 0.7767 | 0.7451 | 0.7767 |
|
64 |
+
| 0.3937 | 1.1 | 300 | 0.5194 | 0.7601 | 0.7018 | 0.7601 |
|
65 |
+
| 0.4219 | 1.29 | 350 | 0.5228 | 0.7665 | 0.7228 | 0.7665 |
|
66 |
+
| 0.4315 | 1.47 | 400 | 0.5791 | 0.7555 | 0.6901 | 0.7555 |
|
67 |
+
| 0.4134 | 1.65 | 450 | 0.6182 | 0.7390 | 0.7196 | 0.7390 |
|
68 |
+
| 0.4173 | 1.84 | 500 | 0.5454 | 0.7638 | 0.7116 | 0.7638 |
|
69 |
+
| 0.3278 | 2.02 | 550 | 0.5477 | 0.7721 | 0.7219 | 0.7721 |
|
70 |
+
| 0.2641 | 2.21 | 600 | 0.6011 | 0.7528 | 0.7152 | 0.7528 |
|
71 |
+
| 0.2256 | 2.39 | 650 | 0.6485 | 0.7601 | 0.6962 | 0.7601 |
|
72 |
+
| 0.2544 | 2.57 | 700 | 0.6459 | 0.7629 | 0.7165 | 0.7629 |
|
73 |
+
| 0.2839 | 2.76 | 750 | 0.5922 | 0.7656 | 0.7253 | 0.7656 |
|
74 |
+
| 0.2634 | 2.94 | 800 | 0.6312 | 0.7638 | 0.7076 | 0.7638 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- PEFT 0.9.0
|
80 |
+
- Transformers 4.39.0.dev0
|
81 |
+
- Pytorch 2.2.1+cu121
|
82 |
+
- Datasets 2.18.0
|
83 |
+
- Tokenizers 0.15.2
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen1.5-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 128,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"v_proj",
|
23 |
+
"o_proj",
|
24 |
+
"down_proj",
|
25 |
+
"q_proj",
|
26 |
+
"up_proj",
|
27 |
+
"k_proj",
|
28 |
+
"gate_proj"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:301692a0eb07d9c0bd5e5640812ddc1e8c3bc1f6d8345dd38a10122ec5be8f96
|
3 |
+
size 1882088146
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/all_results.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.7766544117647058,
|
4 |
+
"eval_f1_macro": 0.7450627015924902,
|
5 |
+
"eval_f1_micro": 0.7766544117647058,
|
6 |
+
"eval_loss": 0.4901912808418274,
|
7 |
+
"eval_runtime": 13.0776,
|
8 |
+
"eval_samples": 1088,
|
9 |
+
"eval_samples_per_second": 83.196,
|
10 |
+
"eval_steps_per_second": 2.6,
|
11 |
+
"test_accuracy": 0.7766544117647058,
|
12 |
+
"test_f1_macro": 0.7415457166235069,
|
13 |
+
"test_f1_micro": 0.7766544117647058,
|
14 |
+
"test_loss": 0.4903779923915863,
|
15 |
+
"test_runtime": 13.1647,
|
16 |
+
"test_samples_per_second": 82.645,
|
17 |
+
"test_steps_per_second": 2.583,
|
18 |
+
"train_loss": 0.4493609409706265,
|
19 |
+
"train_runtime": 1238.3624,
|
20 |
+
"train_samples": 8700,
|
21 |
+
"train_samples_per_second": 21.076,
|
22 |
+
"train_steps_per_second": 0.659
|
23 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: Qwen/Qwen1.5-7B
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen1.5-7B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 256,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 128,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"v_proj",
|
23 |
+
"o_proj",
|
24 |
+
"down_proj",
|
25 |
+
"q_proj",
|
26 |
+
"up_proj",
|
27 |
+
"k_proj",
|
28 |
+
"gate_proj"
|
29 |
+
],
|
30 |
+
"task_type": "SEQ_CLS",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:301692a0eb07d9c0bd5e5640812ddc1e8c3bc1f6d8345dd38a10122ec5be8f96
|
3 |
+
size 1882088146
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/global_step250/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6619ff7cd9ef8e4cb0086da16a12d210a09c4bfd3f22c6822735f7da661302c5
|
3 |
+
size 1918971376
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/global_step250/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b90415212486928841f9fbef29085dc4403133bc6be77ae722c3ecb8e3a384a
|
3 |
+
size 1918971504
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/global_step250/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed9aa0e20325f480fc1b8f4a6ec13b27d874d7becdad95231dedd690faab474a
|
3 |
+
size 639974444
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step250
|
LoRA/Qwen/Qwen1.5_7B_LoRA_MAdAiLab/twitter_disaster/checkpoint-250/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|