akkky02 commited on
Commit
8f76322
1 Parent(s): 6ccfb8f

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. microsoft/phi_2_amazon/README.md +72 -0
  2. microsoft/phi_2_amazon/added_tokens.json +40 -0
  3. microsoft/phi_2_amazon/all_results.json +23 -0
  4. microsoft/phi_2_amazon/checkpoint-350/added_tokens.json +40 -0
  5. microsoft/phi_2_amazon/checkpoint-350/config.json +87 -0
  6. microsoft/phi_2_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. microsoft/phi_2_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. microsoft/phi_2_amazon/checkpoint-350/global_step350/mp_rank_00_model_states.pt +3 -0
  9. microsoft/phi_2_amazon/checkpoint-350/latest +1 -0
  10. microsoft/phi_2_amazon/checkpoint-350/merges.txt +0 -0
  11. microsoft/phi_2_amazon/checkpoint-350/model-00001-of-00002.safetensors +3 -0
  12. microsoft/phi_2_amazon/checkpoint-350/model-00002-of-00002.safetensors +3 -0
  13. microsoft/phi_2_amazon/checkpoint-350/model.safetensors.index.json +459 -0
  14. microsoft/phi_2_amazon/checkpoint-350/rng_state_0.pth +3 -0
  15. microsoft/phi_2_amazon/checkpoint-350/rng_state_1.pth +3 -0
  16. microsoft/phi_2_amazon/checkpoint-350/scheduler.pt +3 -0
  17. microsoft/phi_2_amazon/checkpoint-350/special_tokens_map.json +24 -0
  18. microsoft/phi_2_amazon/checkpoint-350/tokenizer.json +0 -0
  19. microsoft/phi_2_amazon/checkpoint-350/tokenizer_config.json +324 -0
  20. microsoft/phi_2_amazon/checkpoint-350/trainer_state.json +343 -0
  21. microsoft/phi_2_amazon/checkpoint-350/training_args.bin +3 -0
  22. microsoft/phi_2_amazon/checkpoint-350/vocab.json +0 -0
  23. microsoft/phi_2_amazon/checkpoint-350/zero_to_fp32.py +604 -0
  24. microsoft/phi_2_amazon/config.json +87 -0
  25. microsoft/phi_2_amazon/eval_results.json +11 -0
  26. microsoft/phi_2_amazon/merges.txt +0 -0
  27. microsoft/phi_2_amazon/model-00001-of-00002.safetensors +3 -0
  28. microsoft/phi_2_amazon/model-00002-of-00002.safetensors +3 -0
  29. microsoft/phi_2_amazon/model.safetensors.index.json +459 -0
  30. microsoft/phi_2_amazon/run.log +4 -0
  31. microsoft/phi_2_amazon/special_tokens_map.json +24 -0
  32. microsoft/phi_2_amazon/test_results.json +10 -0
  33. microsoft/phi_2_amazon/tokenizer.json +0 -0
  34. microsoft/phi_2_amazon/tokenizer_config.json +324 -0
  35. microsoft/phi_2_amazon/train_results.json +8 -0
  36. microsoft/phi_2_amazon/trainer_state.json +373 -0
  37. microsoft/phi_2_amazon/training_args.bin +3 -0
  38. microsoft/phi_2_amazon/vocab.json +0 -0
  39. microsoft/phi_2_patent/README.md +88 -0
  40. microsoft/phi_2_patent/added_tokens.json +40 -0
  41. microsoft/phi_2_patent/all_results.json +23 -0
  42. microsoft/phi_2_patent/checkpoint-1150/added_tokens.json +40 -0
  43. microsoft/phi_2_patent/checkpoint-1150/config.json +59 -0
  44. microsoft/phi_2_patent/checkpoint-1150/global_step1150/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  45. microsoft/phi_2_patent/checkpoint-1150/global_step1150/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  46. microsoft/phi_2_patent/checkpoint-1150/global_step1150/mp_rank_00_model_states.pt +3 -0
  47. microsoft/phi_2_patent/checkpoint-1150/latest +1 -0
  48. microsoft/phi_2_patent/checkpoint-1150/merges.txt +0 -0
  49. microsoft/phi_2_patent/checkpoint-1150/pytorch_model-00001-of-00002.bin +3 -0
  50. microsoft/phi_2_patent/checkpoint-1150/pytorch_model-00002-of-00002.bin +3 -0
microsoft/phi_2_amazon/README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/phi-2
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: phi_2_amazon
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # phi_2_amazon
17
+
18
+ This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.6451
21
+ - Accuracy: 0.5659
22
+ - F1 Macro: 0.4655
23
+ - F1 Micro: 0.5659
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-06
43
+ - train_batch_size: 16
44
+ - eval_batch_size: 16
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 2
48
+ - total_train_batch_size: 32
49
+ - total_eval_batch_size: 32
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 1.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
58
+ | 3.2062 | 0.13 | 50 | 3.1866 | 0.0922 | 0.0634 | 0.0922 |
59
+ | 2.9492 | 0.26 | 100 | 2.9088 | 0.1528 | 0.1081 | 0.1528 |
60
+ | 2.6945 | 0.39 | 150 | 2.6944 | 0.2286 | 0.1693 | 0.2286 |
61
+ | 2.457 | 0.53 | 200 | 2.4137 | 0.3373 | 0.2529 | 0.3373 |
62
+ | 2.0566 | 0.66 | 250 | 2.0552 | 0.4499 | 0.3541 | 0.4499 |
63
+ | 1.7723 | 0.79 | 300 | 1.7765 | 0.5264 | 0.4225 | 0.5264 |
64
+ | 1.7695 | 0.92 | 350 | 1.6451 | 0.5659 | 0.4655 | 0.5659 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.39.0.dev0
70
+ - Pytorch 2.2.1+cu121
71
+ - Datasets 2.18.0
72
+ - Tokenizers 0.15.2
microsoft/phi_2_amazon/added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
microsoft/phi_2_amazon/all_results.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_accuracy": 0.5658761528326746,
4
+ "eval_f1_macro": 0.4654710477619855,
5
+ "eval_f1_micro": 0.5658761528326746,
6
+ "eval_loss": 1.6451231241226196,
7
+ "eval_runtime": 7.1136,
8
+ "eval_samples": 1518,
9
+ "eval_samples_per_second": 213.395,
10
+ "eval_steps_per_second": 6.748,
11
+ "test_accuracy": 0.5843214756258235,
12
+ "test_f1_macro": 0.47652093191955797,
13
+ "test_f1_micro": 0.5843214756258235,
14
+ "test_loss": 1.5620265007019043,
15
+ "test_runtime": 7.1484,
16
+ "test_samples_per_second": 212.355,
17
+ "test_steps_per_second": 6.715,
18
+ "train_loss": 2.480139802631579,
19
+ "train_runtime": 732.6694,
20
+ "train_samples": 12144,
21
+ "train_samples_per_second": 16.575,
22
+ "train_steps_per_second": 0.519
23
+ }
microsoft/phi_2_amazon/checkpoint-350/added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
microsoft/phi_2_amazon/checkpoint-350/config.json ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/phi-2",
3
+ "architectures": [
4
+ "PhiForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "microsoft/phi-2--configuration_phi.PhiConfig",
9
+ "AutoModelForCausalLM": "microsoft/phi-2--modeling_phi.PhiForCausalLM"
10
+ },
11
+ "bos_token_id": 50256,
12
+ "embd_pdrop": 0.0,
13
+ "eos_token_id": 50256,
14
+ "finetuning_task": "text-classification",
15
+ "hidden_act": "gelu_new",
16
+ "hidden_size": 2560,
17
+ "id2label": {
18
+ "0": "0",
19
+ "1": "1",
20
+ "2": "10",
21
+ "3": "11",
22
+ "4": "12",
23
+ "5": "13",
24
+ "6": "14",
25
+ "7": "15",
26
+ "8": "16",
27
+ "9": "17",
28
+ "10": "18",
29
+ "11": "19",
30
+ "12": "2",
31
+ "13": "20",
32
+ "14": "21",
33
+ "15": "22",
34
+ "16": "3",
35
+ "17": "4",
36
+ "18": "5",
37
+ "19": "6",
38
+ "20": "7",
39
+ "21": "8",
40
+ "22": "9"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 10240,
44
+ "label2id": {
45
+ "0": 0,
46
+ "1": 1,
47
+ "10": 2,
48
+ "11": 3,
49
+ "12": 4,
50
+ "13": 5,
51
+ "14": 6,
52
+ "15": 7,
53
+ "16": 8,
54
+ "17": 9,
55
+ "18": 10,
56
+ "19": 11,
57
+ "2": 12,
58
+ "20": 13,
59
+ "21": 14,
60
+ "22": 15,
61
+ "3": 16,
62
+ "4": 17,
63
+ "5": 18,
64
+ "6": 19,
65
+ "7": 20,
66
+ "8": 21,
67
+ "9": 22
68
+ },
69
+ "layer_norm_eps": 1e-05,
70
+ "max_position_embeddings": 2048,
71
+ "model_type": "phi",
72
+ "num_attention_heads": 32,
73
+ "num_hidden_layers": 32,
74
+ "num_key_value_heads": 32,
75
+ "pad_token_id": 50256,
76
+ "partial_rotary_factor": 0.4,
77
+ "problem_type": "single_label_classification",
78
+ "qk_layernorm": false,
79
+ "resid_pdrop": 0.1,
80
+ "rope_scaling": null,
81
+ "rope_theta": 10000.0,
82
+ "tie_word_embeddings": false,
83
+ "torch_dtype": "bfloat16",
84
+ "transformers_version": "4.39.0.dev0",
85
+ "use_cache": true,
86
+ "vocab_size": 50295
87
+ }
microsoft/phi_2_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:884274b4fa1ebee6d11ee7286ccb7b7c83abdc36dd75a5e0f80a549377cecec5
3
+ size 15877838028
microsoft/phi_2_amazon/checkpoint-350/global_step350/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bdc195ad27b98f0c7d798449a297aa054601e34ae9c712f54f063670c295da4
3
+ size 15877838604
microsoft/phi_2_amazon/checkpoint-350/global_step350/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e92b968be6544a8a5f993f11a5ac80563a2b536502c77360d8338905fe673c80
3
+ size 5292720440
microsoft/phi_2_amazon/checkpoint-350/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step350
microsoft/phi_2_amazon/checkpoint-350/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
microsoft/phi_2_amazon/checkpoint-350/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:989bb2ac0d3b86a036e7aba176461cf8ab74892428d3d6e5fc612487ae885cc1
3
+ size 4990951248
microsoft/phi_2_amazon/checkpoint-350/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef291286fd7ec716770e881af7dfc27d3e2d8aae56e0718de3aafe917c399c49
3
+ size 301704232
microsoft/phi_2_amazon/checkpoint-350/model.safetensors.index.json ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5292605440
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.final_layernorm.bias": "model-00002-of-00002.safetensors",
8
+ "model.final_layernorm.weight": "model-00002-of-00002.safetensors",
9
+ "model.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.dense.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.dense.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.dense.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.dense.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.dense.bias": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.self_attn.dense.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
48
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
56
+ "model.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.11.self_attn.dense.bias": "model-00001-of-00002.safetensors",
58
+ "model.layers.11.self_attn.dense.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
60
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
68
+ "model.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
70
+ "model.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.12.self_attn.dense.bias": "model-00001-of-00002.safetensors",
72
+ "model.layers.12.self_attn.dense.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
80
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
82
+ "model.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
84
+ "model.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.13.self_attn.dense.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.13.self_attn.dense.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
92
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
94
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
96
+ "model.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.14.self_attn.dense.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.14.self_attn.dense.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
104
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
106
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
108
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.15.self_attn.dense.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.15.self_attn.dense.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
116
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
118
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
120
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.16.self_attn.dense.bias": "model-00001-of-00002.safetensors",
128
+ "model.layers.16.self_attn.dense.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
130
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
132
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
140
+ "model.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.17.self_attn.dense.bias": "model-00001-of-00002.safetensors",
142
+ "model.layers.17.self_attn.dense.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
144
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
152
+ "model.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
154
+ "model.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.18.self_attn.dense.bias": "model-00001-of-00002.safetensors",
156
+ "model.layers.18.self_attn.dense.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
164
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
166
+ "model.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
168
+ "model.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.19.self_attn.dense.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.19.self_attn.dense.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
176
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
178
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
180
+ "model.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.2.self_attn.dense.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.2.self_attn.dense.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
188
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
190
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
192
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
196
+ "model.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.20.self_attn.dense.bias": "model-00001-of-00002.safetensors",
198
+ "model.layers.20.self_attn.dense.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
200
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
202
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
204
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.21.input_layernorm.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
208
+ "model.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
210
+ "model.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.21.self_attn.dense.bias": "model-00001-of-00002.safetensors",
212
+ "model.layers.21.self_attn.dense.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
214
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
216
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.22.input_layernorm.bias": "model-00001-of-00002.safetensors",
220
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
222
+ "model.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
224
+ "model.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.22.self_attn.dense.bias": "model-00001-of-00002.safetensors",
226
+ "model.layers.22.self_attn.dense.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
228
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
232
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.23.input_layernorm.bias": "model-00001-of-00002.safetensors",
234
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
236
+ "model.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
238
+ "model.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.23.self_attn.dense.bias": "model-00001-of-00002.safetensors",
240
+ "model.layers.23.self_attn.dense.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
244
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
246
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.24.input_layernorm.bias": "model-00001-of-00002.safetensors",
248
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
250
+ "model.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
252
+ "model.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.24.self_attn.dense.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.24.self_attn.dense.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
256
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
258
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
260
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.25.input_layernorm.bias": "model-00001-of-00002.safetensors",
262
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
264
+ "model.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.25.self_attn.dense.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.25.self_attn.dense.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
272
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
274
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.26.input_layernorm.bias": "model-00001-of-00002.safetensors",
276
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
278
+ "model.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
280
+ "model.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.26.self_attn.dense.bias": "model-00001-of-00002.safetensors",
282
+ "model.layers.26.self_attn.dense.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
284
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
286
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
288
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.27.input_layernorm.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.27.self_attn.dense.bias": "model-00001-of-00002.safetensors",
296
+ "model.layers.27.self_attn.dense.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
298
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
300
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
301
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
302
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.28.input_layernorm.bias": "model-00001-of-00002.safetensors",
304
+ "model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
306
+ "model.layers.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
308
+ "model.layers.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.28.self_attn.dense.bias": "model-00001-of-00002.safetensors",
310
+ "model.layers.28.self_attn.dense.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
312
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
313
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
314
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
316
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.29.input_layernorm.bias": "model-00001-of-00002.safetensors",
318
+ "model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
320
+ "model.layers.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
322
+ "model.layers.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.29.self_attn.dense.bias": "model-00001-of-00002.safetensors",
324
+ "model.layers.29.self_attn.dense.weight": "model-00001-of-00002.safetensors",
325
+ "model.layers.29.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
326
+ "model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.29.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.29.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
332
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
334
+ "model.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
336
+ "model.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
337
+ "model.layers.3.self_attn.dense.bias": "model-00001-of-00002.safetensors",
338
+ "model.layers.3.self_attn.dense.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
340
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
342
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
344
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
345
+ "model.layers.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
346
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
348
+ "model.layers.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.30.self_attn.dense.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.30.self_attn.dense.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.30.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
356
+ "model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
357
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
358
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
360
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.31.self_attn.dense.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.31.self_attn.dense.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
368
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
369
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
370
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
371
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
372
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
373
+ "model.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.dense.bias": "model-00001-of-00002.safetensors",
380
+ "model.layers.4.self_attn.dense.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
382
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
384
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
392
+ "model.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.5.self_attn.dense.bias": "model-00001-of-00002.safetensors",
394
+ "model.layers.5.self_attn.dense.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
396
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
404
+ "model.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
406
+ "model.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.6.self_attn.dense.bias": "model-00001-of-00002.safetensors",
408
+ "model.layers.6.self_attn.dense.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
416
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
418
+ "model.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
420
+ "model.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.7.self_attn.dense.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.7.self_attn.dense.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
428
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
430
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
432
+ "model.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.8.self_attn.dense.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.8.self_attn.dense.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
440
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
441
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
442
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
444
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
446
+ "model.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
447
+ "model.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
448
+ "model.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
449
+ "model.layers.9.self_attn.dense.bias": "model-00001-of-00002.safetensors",
450
+ "model.layers.9.self_attn.dense.weight": "model-00001-of-00002.safetensors",
451
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
452
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
453
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
454
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
455
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
456
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
457
+ "score.weight": "model-00002-of-00002.safetensors"
458
+ }
459
+ }
microsoft/phi_2_amazon/checkpoint-350/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e075b4eb511660c03e29ff3882bcdce8e222b0690fd215a9e46030b9cea4ef05
3
+ size 14512
microsoft/phi_2_amazon/checkpoint-350/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbe41e9fbca1d1efa20662ca75589cb6285756522e7b13c5368c47ee799d9cf1
3
+ size 14512
microsoft/phi_2_amazon/checkpoint-350/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93c1c646c9b712a4834345fe22046fc71096a5565a8a35ccaa0f8943b016cf5a
3
+ size 1064
microsoft/phi_2_amazon/checkpoint-350/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
microsoft/phi_2_amazon/checkpoint-350/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
microsoft/phi_2_amazon/checkpoint-350/tokenizer_config.json ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ }
316
+ },
317
+ "bos_token": "<|endoftext|>",
318
+ "clean_up_tokenization_spaces": true,
319
+ "eos_token": "<|endoftext|>",
320
+ "model_max_length": 2048,
321
+ "pad_token": "<|endoftext|>",
322
+ "tokenizer_class": "CodeGenTokenizer",
323
+ "unk_token": "<|endoftext|>"
324
+ }
microsoft/phi_2_amazon/checkpoint-350/trainer_state.json ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.6451231241226196,
3
+ "best_model_checkpoint": "../../experiments_checkpoints/MAdAiLab/microsoft/phi_2_amazon/checkpoint-350",
4
+ "epoch": 0.9210526315789473,
5
+ "eval_steps": 50,
6
+ "global_step": 350,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 223.38046264648438,
14
+ "learning_rate": 4.8684210526315795e-06,
15
+ "loss": 4.075,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "grad_norm": 277.74298095703125,
21
+ "learning_rate": 4.736842105263158e-06,
22
+ "loss": 3.6094,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.08,
27
+ "grad_norm": 109.10823059082031,
28
+ "learning_rate": 4.605263157894737e-06,
29
+ "loss": 3.5742,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.11,
34
+ "grad_norm": 155.17674255371094,
35
+ "learning_rate": 4.473684210526316e-06,
36
+ "loss": 3.325,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.13,
41
+ "grad_norm": 141.57481384277344,
42
+ "learning_rate": 4.342105263157895e-06,
43
+ "loss": 3.2062,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.13,
48
+ "eval_accuracy": 0.0922266139657444,
49
+ "eval_f1_macro": 0.06341542983984753,
50
+ "eval_f1_micro": 0.0922266139657444,
51
+ "eval_loss": 3.186594247817993,
52
+ "eval_runtime": 7.2855,
53
+ "eval_samples_per_second": 208.358,
54
+ "eval_steps_per_second": 6.588,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.16,
59
+ "grad_norm": 144.5673370361328,
60
+ "learning_rate": 4.210526315789474e-06,
61
+ "loss": 3.1797,
62
+ "step": 60
63
+ },
64
+ {
65
+ "epoch": 0.18,
66
+ "grad_norm": 124.39603424072266,
67
+ "learning_rate": 4.078947368421053e-06,
68
+ "loss": 3.0828,
69
+ "step": 70
70
+ },
71
+ {
72
+ "epoch": 0.21,
73
+ "grad_norm": 151.6533660888672,
74
+ "learning_rate": 3.947368421052632e-06,
75
+ "loss": 2.9945,
76
+ "step": 80
77
+ },
78
+ {
79
+ "epoch": 0.24,
80
+ "grad_norm": 105.09723663330078,
81
+ "learning_rate": 3.815789473684211e-06,
82
+ "loss": 2.982,
83
+ "step": 90
84
+ },
85
+ {
86
+ "epoch": 0.26,
87
+ "grad_norm": 141.55398559570312,
88
+ "learning_rate": 3.6842105263157896e-06,
89
+ "loss": 2.9492,
90
+ "step": 100
91
+ },
92
+ {
93
+ "epoch": 0.26,
94
+ "eval_accuracy": 0.152832674571805,
95
+ "eval_f1_macro": 0.10809380474427124,
96
+ "eval_f1_micro": 0.152832674571805,
97
+ "eval_loss": 2.908843755722046,
98
+ "eval_runtime": 7.3105,
99
+ "eval_samples_per_second": 207.647,
100
+ "eval_steps_per_second": 6.566,
101
+ "step": 100
102
+ },
103
+ {
104
+ "epoch": 0.29,
105
+ "grad_norm": 451.0547790527344,
106
+ "learning_rate": 3.5526315789473687e-06,
107
+ "loss": 2.975,
108
+ "step": 110
109
+ },
110
+ {
111
+ "epoch": 0.32,
112
+ "grad_norm": 124.9840316772461,
113
+ "learning_rate": 3.421052631578948e-06,
114
+ "loss": 2.8461,
115
+ "step": 120
116
+ },
117
+ {
118
+ "epoch": 0.34,
119
+ "grad_norm": 199.818359375,
120
+ "learning_rate": 3.289473684210527e-06,
121
+ "loss": 2.8281,
122
+ "step": 130
123
+ },
124
+ {
125
+ "epoch": 0.37,
126
+ "grad_norm": 135.9771728515625,
127
+ "learning_rate": 3.157894736842105e-06,
128
+ "loss": 2.8516,
129
+ "step": 140
130
+ },
131
+ {
132
+ "epoch": 0.39,
133
+ "grad_norm": 106.21376037597656,
134
+ "learning_rate": 3.0263157894736843e-06,
135
+ "loss": 2.6945,
136
+ "step": 150
137
+ },
138
+ {
139
+ "epoch": 0.39,
140
+ "eval_accuracy": 0.22859025032938077,
141
+ "eval_f1_macro": 0.16931697526842224,
142
+ "eval_f1_micro": 0.22859025032938077,
143
+ "eval_loss": 2.6944169998168945,
144
+ "eval_runtime": 7.32,
145
+ "eval_samples_per_second": 207.377,
146
+ "eval_steps_per_second": 6.557,
147
+ "step": 150
148
+ },
149
+ {
150
+ "epoch": 0.42,
151
+ "grad_norm": 163.9792022705078,
152
+ "learning_rate": 2.8947368421052634e-06,
153
+ "loss": 2.682,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.45,
158
+ "grad_norm": 228.08639526367188,
159
+ "learning_rate": 2.7631578947368424e-06,
160
+ "loss": 2.6945,
161
+ "step": 170
162
+ },
163
+ {
164
+ "epoch": 0.47,
165
+ "grad_norm": 237.11058044433594,
166
+ "learning_rate": 2.631578947368421e-06,
167
+ "loss": 2.5578,
168
+ "step": 180
169
+ },
170
+ {
171
+ "epoch": 0.5,
172
+ "grad_norm": 115.18451690673828,
173
+ "learning_rate": 2.5e-06,
174
+ "loss": 2.5758,
175
+ "step": 190
176
+ },
177
+ {
178
+ "epoch": 0.53,
179
+ "grad_norm": 223.4733123779297,
180
+ "learning_rate": 2.368421052631579e-06,
181
+ "loss": 2.457,
182
+ "step": 200
183
+ },
184
+ {
185
+ "epoch": 0.53,
186
+ "eval_accuracy": 0.3372859025032938,
187
+ "eval_f1_macro": 0.25289488806347304,
188
+ "eval_f1_micro": 0.3372859025032938,
189
+ "eval_loss": 2.4136712551116943,
190
+ "eval_runtime": 7.3246,
191
+ "eval_samples_per_second": 207.247,
192
+ "eval_steps_per_second": 6.553,
193
+ "step": 200
194
+ },
195
+ {
196
+ "epoch": 0.55,
197
+ "grad_norm": 209.8923797607422,
198
+ "learning_rate": 2.236842105263158e-06,
199
+ "loss": 2.2898,
200
+ "step": 210
201
+ },
202
+ {
203
+ "epoch": 0.58,
204
+ "grad_norm": 160.7167205810547,
205
+ "learning_rate": 2.105263157894737e-06,
206
+ "loss": 2.2609,
207
+ "step": 220
208
+ },
209
+ {
210
+ "epoch": 0.61,
211
+ "grad_norm": 241.58717346191406,
212
+ "learning_rate": 1.973684210526316e-06,
213
+ "loss": 2.2477,
214
+ "step": 230
215
+ },
216
+ {
217
+ "epoch": 0.63,
218
+ "grad_norm": 188.09275817871094,
219
+ "learning_rate": 1.8421052631578948e-06,
220
+ "loss": 2.0973,
221
+ "step": 240
222
+ },
223
+ {
224
+ "epoch": 0.66,
225
+ "grad_norm": 116.9455337524414,
226
+ "learning_rate": 1.710526315789474e-06,
227
+ "loss": 2.0566,
228
+ "step": 250
229
+ },
230
+ {
231
+ "epoch": 0.66,
232
+ "eval_accuracy": 0.4499341238471673,
233
+ "eval_f1_macro": 0.35408778840994787,
234
+ "eval_f1_micro": 0.4499341238471673,
235
+ "eval_loss": 2.0551609992980957,
236
+ "eval_runtime": 7.3154,
237
+ "eval_samples_per_second": 207.508,
238
+ "eval_steps_per_second": 6.562,
239
+ "step": 250
240
+ },
241
+ {
242
+ "epoch": 0.68,
243
+ "grad_norm": 124.80367279052734,
244
+ "learning_rate": 1.5789473684210526e-06,
245
+ "loss": 2.0695,
246
+ "step": 260
247
+ },
248
+ {
249
+ "epoch": 0.71,
250
+ "grad_norm": 152.9394073486328,
251
+ "learning_rate": 1.4473684210526317e-06,
252
+ "loss": 1.9953,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 0.74,
257
+ "grad_norm": 146.58970642089844,
258
+ "learning_rate": 1.3157894736842106e-06,
259
+ "loss": 1.8379,
260
+ "step": 280
261
+ },
262
+ {
263
+ "epoch": 0.76,
264
+ "grad_norm": 177.54376220703125,
265
+ "learning_rate": 1.1842105263157894e-06,
266
+ "loss": 1.9055,
267
+ "step": 290
268
+ },
269
+ {
270
+ "epoch": 0.79,
271
+ "grad_norm": 283.8413391113281,
272
+ "learning_rate": 1.0526315789473685e-06,
273
+ "loss": 1.7723,
274
+ "step": 300
275
+ },
276
+ {
277
+ "epoch": 0.79,
278
+ "eval_accuracy": 0.5263504611330698,
279
+ "eval_f1_macro": 0.422505143115707,
280
+ "eval_f1_micro": 0.5263504611330698,
281
+ "eval_loss": 1.7764842510223389,
282
+ "eval_runtime": 7.3136,
283
+ "eval_samples_per_second": 207.558,
284
+ "eval_steps_per_second": 6.563,
285
+ "step": 300
286
+ },
287
+ {
288
+ "epoch": 0.82,
289
+ "grad_norm": 137.7584686279297,
290
+ "learning_rate": 9.210526315789474e-07,
291
+ "loss": 1.7563,
292
+ "step": 310
293
+ },
294
+ {
295
+ "epoch": 0.84,
296
+ "grad_norm": 84.1349105834961,
297
+ "learning_rate": 7.894736842105263e-07,
298
+ "loss": 1.7305,
299
+ "step": 320
300
+ },
301
+ {
302
+ "epoch": 0.87,
303
+ "grad_norm": 113.17578887939453,
304
+ "learning_rate": 6.578947368421053e-07,
305
+ "loss": 1.7602,
306
+ "step": 330
307
+ },
308
+ {
309
+ "epoch": 0.89,
310
+ "grad_norm": 158.471923828125,
311
+ "learning_rate": 5.263157894736843e-07,
312
+ "loss": 1.6398,
313
+ "step": 340
314
+ },
315
+ {
316
+ "epoch": 0.92,
317
+ "grad_norm": 150.00511169433594,
318
+ "learning_rate": 3.9473684210526315e-07,
319
+ "loss": 1.7695,
320
+ "step": 350
321
+ },
322
+ {
323
+ "epoch": 0.92,
324
+ "eval_accuracy": 0.5658761528326746,
325
+ "eval_f1_macro": 0.4654710477619855,
326
+ "eval_f1_micro": 0.5658761528326746,
327
+ "eval_loss": 1.6451231241226196,
328
+ "eval_runtime": 7.4633,
329
+ "eval_samples_per_second": 203.396,
330
+ "eval_steps_per_second": 6.431,
331
+ "step": 350
332
+ }
333
+ ],
334
+ "logging_steps": 10,
335
+ "max_steps": 380,
336
+ "num_input_tokens_seen": 0,
337
+ "num_train_epochs": 1,
338
+ "save_steps": 50,
339
+ "total_flos": 2.165493586722816e+16,
340
+ "train_batch_size": 16,
341
+ "trial_name": null,
342
+ "trial_params": null
343
+ }
microsoft/phi_2_amazon/checkpoint-350/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:481d465118323c15678614aff061164e9c71cc30c0ec85efb3e3366cd4bf79b0
3
+ size 5944
microsoft/phi_2_amazon/checkpoint-350/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
microsoft/phi_2_amazon/checkpoint-350/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
microsoft/phi_2_amazon/config.json ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/phi-2",
3
+ "architectures": [
4
+ "PhiForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "microsoft/phi-2--configuration_phi.PhiConfig",
9
+ "AutoModelForCausalLM": "microsoft/phi-2--modeling_phi.PhiForCausalLM"
10
+ },
11
+ "bos_token_id": 50256,
12
+ "embd_pdrop": 0.0,
13
+ "eos_token_id": 50256,
14
+ "finetuning_task": "text-classification",
15
+ "hidden_act": "gelu_new",
16
+ "hidden_size": 2560,
17
+ "id2label": {
18
+ "0": "0",
19
+ "1": "1",
20
+ "2": "10",
21
+ "3": "11",
22
+ "4": "12",
23
+ "5": "13",
24
+ "6": "14",
25
+ "7": "15",
26
+ "8": "16",
27
+ "9": "17",
28
+ "10": "18",
29
+ "11": "19",
30
+ "12": "2",
31
+ "13": "20",
32
+ "14": "21",
33
+ "15": "22",
34
+ "16": "3",
35
+ "17": "4",
36
+ "18": "5",
37
+ "19": "6",
38
+ "20": "7",
39
+ "21": "8",
40
+ "22": "9"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 10240,
44
+ "label2id": {
45
+ "0": 0,
46
+ "1": 1,
47
+ "10": 2,
48
+ "11": 3,
49
+ "12": 4,
50
+ "13": 5,
51
+ "14": 6,
52
+ "15": 7,
53
+ "16": 8,
54
+ "17": 9,
55
+ "18": 10,
56
+ "19": 11,
57
+ "2": 12,
58
+ "20": 13,
59
+ "21": 14,
60
+ "22": 15,
61
+ "3": 16,
62
+ "4": 17,
63
+ "5": 18,
64
+ "6": 19,
65
+ "7": 20,
66
+ "8": 21,
67
+ "9": 22
68
+ },
69
+ "layer_norm_eps": 1e-05,
70
+ "max_position_embeddings": 2048,
71
+ "model_type": "phi",
72
+ "num_attention_heads": 32,
73
+ "num_hidden_layers": 32,
74
+ "num_key_value_heads": 32,
75
+ "pad_token_id": 50256,
76
+ "partial_rotary_factor": 0.4,
77
+ "problem_type": "single_label_classification",
78
+ "qk_layernorm": false,
79
+ "resid_pdrop": 0.1,
80
+ "rope_scaling": null,
81
+ "rope_theta": 10000.0,
82
+ "tie_word_embeddings": false,
83
+ "torch_dtype": "bfloat16",
84
+ "transformers_version": "4.39.0.dev0",
85
+ "use_cache": true,
86
+ "vocab_size": 50295
87
+ }
microsoft/phi_2_amazon/eval_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "eval_accuracy": 0.5658761528326746,
4
+ "eval_f1_macro": 0.4654710477619855,
5
+ "eval_f1_micro": 0.5658761528326746,
6
+ "eval_loss": 1.6451231241226196,
7
+ "eval_runtime": 7.1136,
8
+ "eval_samples": 1518,
9
+ "eval_samples_per_second": 213.395,
10
+ "eval_steps_per_second": 6.748
11
+ }
microsoft/phi_2_amazon/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
microsoft/phi_2_amazon/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:989bb2ac0d3b86a036e7aba176461cf8ab74892428d3d6e5fc612487ae885cc1
3
+ size 4990951248
microsoft/phi_2_amazon/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef291286fd7ec716770e881af7dfc27d3e2d8aae56e0718de3aafe917c399c49
3
+ size 301704232
microsoft/phi_2_amazon/model.safetensors.index.json ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5292605440
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.final_layernorm.bias": "model-00002-of-00002.safetensors",
8
+ "model.final_layernorm.weight": "model-00002-of-00002.safetensors",
9
+ "model.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.dense.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.dense.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
20
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
22
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.dense.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.dense.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
32
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
34
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
36
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.dense.bias": "model-00001-of-00002.safetensors",
44
+ "model.layers.10.self_attn.dense.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
46
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
48
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
56
+ "model.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.11.self_attn.dense.bias": "model-00001-of-00002.safetensors",
58
+ "model.layers.11.self_attn.dense.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
60
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
68
+ "model.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
70
+ "model.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.12.self_attn.dense.bias": "model-00001-of-00002.safetensors",
72
+ "model.layers.12.self_attn.dense.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
80
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
82
+ "model.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
84
+ "model.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.13.self_attn.dense.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.13.self_attn.dense.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
92
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
94
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
96
+ "model.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.14.self_attn.dense.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.14.self_attn.dense.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
104
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
106
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
108
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.15.self_attn.dense.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.15.self_attn.dense.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
116
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
118
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
120
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.16.self_attn.dense.bias": "model-00001-of-00002.safetensors",
128
+ "model.layers.16.self_attn.dense.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
130
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
132
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
140
+ "model.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.17.self_attn.dense.bias": "model-00001-of-00002.safetensors",
142
+ "model.layers.17.self_attn.dense.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
144
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
152
+ "model.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
154
+ "model.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.18.self_attn.dense.bias": "model-00001-of-00002.safetensors",
156
+ "model.layers.18.self_attn.dense.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
164
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
166
+ "model.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
168
+ "model.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.19.self_attn.dense.bias": "model-00001-of-00002.safetensors",
170
+ "model.layers.19.self_attn.dense.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
176
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
178
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
180
+ "model.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
182
+ "model.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.2.self_attn.dense.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.2.self_attn.dense.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
188
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
190
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
192
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
194
+ "model.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
196
+ "model.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.20.self_attn.dense.bias": "model-00001-of-00002.safetensors",
198
+ "model.layers.20.self_attn.dense.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
200
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
202
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
204
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.21.input_layernorm.bias": "model-00001-of-00002.safetensors",
206
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
208
+ "model.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
210
+ "model.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.21.self_attn.dense.bias": "model-00001-of-00002.safetensors",
212
+ "model.layers.21.self_attn.dense.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
214
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
216
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
218
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.22.input_layernorm.bias": "model-00001-of-00002.safetensors",
220
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
222
+ "model.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
224
+ "model.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.22.self_attn.dense.bias": "model-00001-of-00002.safetensors",
226
+ "model.layers.22.self_attn.dense.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
228
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
230
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
232
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.23.input_layernorm.bias": "model-00001-of-00002.safetensors",
234
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
236
+ "model.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
238
+ "model.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.23.self_attn.dense.bias": "model-00001-of-00002.safetensors",
240
+ "model.layers.23.self_attn.dense.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
242
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
244
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
246
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.24.input_layernorm.bias": "model-00001-of-00002.safetensors",
248
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
250
+ "model.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
252
+ "model.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.24.self_attn.dense.bias": "model-00001-of-00002.safetensors",
254
+ "model.layers.24.self_attn.dense.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
256
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
258
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
260
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.25.input_layernorm.bias": "model-00001-of-00002.safetensors",
262
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
264
+ "model.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
266
+ "model.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.25.self_attn.dense.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.25.self_attn.dense.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
272
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
274
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.26.input_layernorm.bias": "model-00001-of-00002.safetensors",
276
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
278
+ "model.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
280
+ "model.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.26.self_attn.dense.bias": "model-00001-of-00002.safetensors",
282
+ "model.layers.26.self_attn.dense.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
284
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
286
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
288
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.27.input_layernorm.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.27.self_attn.dense.bias": "model-00001-of-00002.safetensors",
296
+ "model.layers.27.self_attn.dense.weight": "model-00001-of-00002.safetensors",
297
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
298
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
299
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
300
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
301
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
302
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
303
+ "model.layers.28.input_layernorm.bias": "model-00001-of-00002.safetensors",
304
+ "model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
305
+ "model.layers.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
306
+ "model.layers.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
307
+ "model.layers.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
308
+ "model.layers.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
309
+ "model.layers.28.self_attn.dense.bias": "model-00001-of-00002.safetensors",
310
+ "model.layers.28.self_attn.dense.weight": "model-00001-of-00002.safetensors",
311
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
312
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
313
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
314
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
315
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
316
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
317
+ "model.layers.29.input_layernorm.bias": "model-00001-of-00002.safetensors",
318
+ "model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
319
+ "model.layers.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
320
+ "model.layers.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
321
+ "model.layers.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
322
+ "model.layers.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
323
+ "model.layers.29.self_attn.dense.bias": "model-00001-of-00002.safetensors",
324
+ "model.layers.29.self_attn.dense.weight": "model-00001-of-00002.safetensors",
325
+ "model.layers.29.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
326
+ "model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
327
+ "model.layers.29.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
328
+ "model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
329
+ "model.layers.29.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
330
+ "model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
331
+ "model.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
332
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
333
+ "model.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
334
+ "model.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
335
+ "model.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
336
+ "model.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
337
+ "model.layers.3.self_attn.dense.bias": "model-00001-of-00002.safetensors",
338
+ "model.layers.3.self_attn.dense.weight": "model-00001-of-00002.safetensors",
339
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
340
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
341
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
342
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
343
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
344
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
345
+ "model.layers.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
346
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
348
+ "model.layers.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.30.self_attn.dense.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.30.self_attn.dense.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.30.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
356
+ "model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
357
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
358
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
360
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.31.self_attn.dense.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.31.self_attn.dense.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
368
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
369
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
370
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
371
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
372
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
373
+ "model.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.dense.bias": "model-00001-of-00002.safetensors",
380
+ "model.layers.4.self_attn.dense.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
382
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
384
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
392
+ "model.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.5.self_attn.dense.bias": "model-00001-of-00002.safetensors",
394
+ "model.layers.5.self_attn.dense.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
396
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
404
+ "model.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
406
+ "model.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.6.self_attn.dense.bias": "model-00001-of-00002.safetensors",
408
+ "model.layers.6.self_attn.dense.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
416
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
418
+ "model.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
420
+ "model.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.7.self_attn.dense.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.7.self_attn.dense.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
428
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
430
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
432
+ "model.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.8.self_attn.dense.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.8.self_attn.dense.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
440
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
441
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
442
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
443
+ "model.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
444
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
445
+ "model.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
446
+ "model.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
447
+ "model.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
448
+ "model.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
449
+ "model.layers.9.self_attn.dense.bias": "model-00001-of-00002.safetensors",
450
+ "model.layers.9.self_attn.dense.weight": "model-00001-of-00002.safetensors",
451
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
452
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
453
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
454
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
455
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
456
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
457
+ "score.weight": "model-00002-of-00002.safetensors"
458
+ }
459
+ }
microsoft/phi_2_amazon/run.log ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ 03/15/2024 11:29:53 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False
2
+ 03/15/2024 11:29:53 - WARNING - __main__ - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, 16-bits training: False
3
+ 03/15/2024 11:30:01 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
4
+ 03/15/2024 11:30:02 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
microsoft/phi_2_amazon/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
microsoft/phi_2_amazon/test_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "test_accuracy": 0.5843214756258235,
4
+ "test_f1_macro": 0.47652093191955797,
5
+ "test_f1_micro": 0.5843214756258235,
6
+ "test_loss": 1.5620265007019043,
7
+ "test_runtime": 7.1484,
8
+ "test_samples_per_second": 212.355,
9
+ "test_steps_per_second": 6.715
10
+ }
microsoft/phi_2_amazon/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
microsoft/phi_2_amazon/tokenizer_config.json ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "50256": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "50257": {
13
+ "content": " ",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": false
19
+ },
20
+ "50258": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50259": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50260": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50261": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50262": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50263": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50264": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50265": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50266": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50267": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50268": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50269": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50270": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50271": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50272": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50273": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50274": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50275": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50276": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50277": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50278": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50279": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50280": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "50281": {
205
+ "content": " ",
206
+ "lstrip": false,
207
+ "normalized": true,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ },
212
+ "50282": {
213
+ "content": " ",
214
+ "lstrip": false,
215
+ "normalized": true,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": false
219
+ },
220
+ "50283": {
221
+ "content": " ",
222
+ "lstrip": false,
223
+ "normalized": true,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": false
227
+ },
228
+ "50284": {
229
+ "content": " ",
230
+ "lstrip": false,
231
+ "normalized": true,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": false
235
+ },
236
+ "50285": {
237
+ "content": " ",
238
+ "lstrip": false,
239
+ "normalized": true,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": false
243
+ },
244
+ "50286": {
245
+ "content": " ",
246
+ "lstrip": false,
247
+ "normalized": true,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": false
251
+ },
252
+ "50287": {
253
+ "content": "\t\t\t\t\t\t\t\t\t",
254
+ "lstrip": false,
255
+ "normalized": true,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": false
259
+ },
260
+ "50288": {
261
+ "content": "\t\t\t\t\t\t\t\t",
262
+ "lstrip": false,
263
+ "normalized": true,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": false
267
+ },
268
+ "50289": {
269
+ "content": "\t\t\t\t\t\t\t",
270
+ "lstrip": false,
271
+ "normalized": true,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": false
275
+ },
276
+ "50290": {
277
+ "content": "\t\t\t\t\t\t",
278
+ "lstrip": false,
279
+ "normalized": true,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": false
283
+ },
284
+ "50291": {
285
+ "content": "\t\t\t\t\t",
286
+ "lstrip": false,
287
+ "normalized": true,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": false
291
+ },
292
+ "50292": {
293
+ "content": "\t\t\t\t",
294
+ "lstrip": false,
295
+ "normalized": true,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": false
299
+ },
300
+ "50293": {
301
+ "content": "\t\t\t",
302
+ "lstrip": false,
303
+ "normalized": true,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": false
307
+ },
308
+ "50294": {
309
+ "content": "\t\t",
310
+ "lstrip": false,
311
+ "normalized": true,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": false
315
+ }
316
+ },
317
+ "bos_token": "<|endoftext|>",
318
+ "clean_up_tokenization_spaces": true,
319
+ "eos_token": "<|endoftext|>",
320
+ "model_max_length": 2048,
321
+ "pad_token": "<|endoftext|>",
322
+ "tokenizer_class": "CodeGenTokenizer",
323
+ "unk_token": "<|endoftext|>"
324
+ }
microsoft/phi_2_amazon/train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "train_loss": 2.480139802631579,
4
+ "train_runtime": 732.6694,
5
+ "train_samples": 12144,
6
+ "train_samples_per_second": 16.575,
7
+ "train_steps_per_second": 0.519
8
+ }
microsoft/phi_2_amazon/trainer_state.json ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.6451231241226196,
3
+ "best_model_checkpoint": "../../experiments_checkpoints/MAdAiLab/microsoft/phi_2_amazon/checkpoint-350",
4
+ "epoch": 1.0,
5
+ "eval_steps": 50,
6
+ "global_step": 380,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03,
13
+ "grad_norm": 223.38046264648438,
14
+ "learning_rate": 4.8684210526315795e-06,
15
+ "loss": 4.075,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "grad_norm": 277.74298095703125,
21
+ "learning_rate": 4.736842105263158e-06,
22
+ "loss": 3.6094,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.08,
27
+ "grad_norm": 109.10823059082031,
28
+ "learning_rate": 4.605263157894737e-06,
29
+ "loss": 3.5742,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.11,
34
+ "grad_norm": 155.17674255371094,
35
+ "learning_rate": 4.473684210526316e-06,
36
+ "loss": 3.325,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.13,
41
+ "grad_norm": 141.57481384277344,
42
+ "learning_rate": 4.342105263157895e-06,
43
+ "loss": 3.2062,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.13,
48
+ "eval_accuracy": 0.0922266139657444,
49
+ "eval_f1_macro": 0.06341542983984753,
50
+ "eval_f1_micro": 0.0922266139657444,
51
+ "eval_loss": 3.186594247817993,
52
+ "eval_runtime": 7.2855,
53
+ "eval_samples_per_second": 208.358,
54
+ "eval_steps_per_second": 6.588,
55
+ "step": 50
56
+ },
57
+ {
58
+ "epoch": 0.16,
59
+ "grad_norm": 144.5673370361328,
60
+ "learning_rate": 4.210526315789474e-06,
61
+ "loss": 3.1797,
62
+ "step": 60
63
+ },
64
+ {
65
+ "epoch": 0.18,
66
+ "grad_norm": 124.39603424072266,
67
+ "learning_rate": 4.078947368421053e-06,
68
+ "loss": 3.0828,
69
+ "step": 70
70
+ },
71
+ {
72
+ "epoch": 0.21,
73
+ "grad_norm": 151.6533660888672,
74
+ "learning_rate": 3.947368421052632e-06,
75
+ "loss": 2.9945,
76
+ "step": 80
77
+ },
78
+ {
79
+ "epoch": 0.24,
80
+ "grad_norm": 105.09723663330078,
81
+ "learning_rate": 3.815789473684211e-06,
82
+ "loss": 2.982,
83
+ "step": 90
84
+ },
85
+ {
86
+ "epoch": 0.26,
87
+ "grad_norm": 141.55398559570312,
88
+ "learning_rate": 3.6842105263157896e-06,
89
+ "loss": 2.9492,
90
+ "step": 100
91
+ },
92
+ {
93
+ "epoch": 0.26,
94
+ "eval_accuracy": 0.152832674571805,
95
+ "eval_f1_macro": 0.10809380474427124,
96
+ "eval_f1_micro": 0.152832674571805,
97
+ "eval_loss": 2.908843755722046,
98
+ "eval_runtime": 7.3105,
99
+ "eval_samples_per_second": 207.647,
100
+ "eval_steps_per_second": 6.566,
101
+ "step": 100
102
+ },
103
+ {
104
+ "epoch": 0.29,
105
+ "grad_norm": 451.0547790527344,
106
+ "learning_rate": 3.5526315789473687e-06,
107
+ "loss": 2.975,
108
+ "step": 110
109
+ },
110
+ {
111
+ "epoch": 0.32,
112
+ "grad_norm": 124.9840316772461,
113
+ "learning_rate": 3.421052631578948e-06,
114
+ "loss": 2.8461,
115
+ "step": 120
116
+ },
117
+ {
118
+ "epoch": 0.34,
119
+ "grad_norm": 199.818359375,
120
+ "learning_rate": 3.289473684210527e-06,
121
+ "loss": 2.8281,
122
+ "step": 130
123
+ },
124
+ {
125
+ "epoch": 0.37,
126
+ "grad_norm": 135.9771728515625,
127
+ "learning_rate": 3.157894736842105e-06,
128
+ "loss": 2.8516,
129
+ "step": 140
130
+ },
131
+ {
132
+ "epoch": 0.39,
133
+ "grad_norm": 106.21376037597656,
134
+ "learning_rate": 3.0263157894736843e-06,
135
+ "loss": 2.6945,
136
+ "step": 150
137
+ },
138
+ {
139
+ "epoch": 0.39,
140
+ "eval_accuracy": 0.22859025032938077,
141
+ "eval_f1_macro": 0.16931697526842224,
142
+ "eval_f1_micro": 0.22859025032938077,
143
+ "eval_loss": 2.6944169998168945,
144
+ "eval_runtime": 7.32,
145
+ "eval_samples_per_second": 207.377,
146
+ "eval_steps_per_second": 6.557,
147
+ "step": 150
148
+ },
149
+ {
150
+ "epoch": 0.42,
151
+ "grad_norm": 163.9792022705078,
152
+ "learning_rate": 2.8947368421052634e-06,
153
+ "loss": 2.682,
154
+ "step": 160
155
+ },
156
+ {
157
+ "epoch": 0.45,
158
+ "grad_norm": 228.08639526367188,
159
+ "learning_rate": 2.7631578947368424e-06,
160
+ "loss": 2.6945,
161
+ "step": 170
162
+ },
163
+ {
164
+ "epoch": 0.47,
165
+ "grad_norm": 237.11058044433594,
166
+ "learning_rate": 2.631578947368421e-06,
167
+ "loss": 2.5578,
168
+ "step": 180
169
+ },
170
+ {
171
+ "epoch": 0.5,
172
+ "grad_norm": 115.18451690673828,
173
+ "learning_rate": 2.5e-06,
174
+ "loss": 2.5758,
175
+ "step": 190
176
+ },
177
+ {
178
+ "epoch": 0.53,
179
+ "grad_norm": 223.4733123779297,
180
+ "learning_rate": 2.368421052631579e-06,
181
+ "loss": 2.457,
182
+ "step": 200
183
+ },
184
+ {
185
+ "epoch": 0.53,
186
+ "eval_accuracy": 0.3372859025032938,
187
+ "eval_f1_macro": 0.25289488806347304,
188
+ "eval_f1_micro": 0.3372859025032938,
189
+ "eval_loss": 2.4136712551116943,
190
+ "eval_runtime": 7.3246,
191
+ "eval_samples_per_second": 207.247,
192
+ "eval_steps_per_second": 6.553,
193
+ "step": 200
194
+ },
195
+ {
196
+ "epoch": 0.55,
197
+ "grad_norm": 209.8923797607422,
198
+ "learning_rate": 2.236842105263158e-06,
199
+ "loss": 2.2898,
200
+ "step": 210
201
+ },
202
+ {
203
+ "epoch": 0.58,
204
+ "grad_norm": 160.7167205810547,
205
+ "learning_rate": 2.105263157894737e-06,
206
+ "loss": 2.2609,
207
+ "step": 220
208
+ },
209
+ {
210
+ "epoch": 0.61,
211
+ "grad_norm": 241.58717346191406,
212
+ "learning_rate": 1.973684210526316e-06,
213
+ "loss": 2.2477,
214
+ "step": 230
215
+ },
216
+ {
217
+ "epoch": 0.63,
218
+ "grad_norm": 188.09275817871094,
219
+ "learning_rate": 1.8421052631578948e-06,
220
+ "loss": 2.0973,
221
+ "step": 240
222
+ },
223
+ {
224
+ "epoch": 0.66,
225
+ "grad_norm": 116.9455337524414,
226
+ "learning_rate": 1.710526315789474e-06,
227
+ "loss": 2.0566,
228
+ "step": 250
229
+ },
230
+ {
231
+ "epoch": 0.66,
232
+ "eval_accuracy": 0.4499341238471673,
233
+ "eval_f1_macro": 0.35408778840994787,
234
+ "eval_f1_micro": 0.4499341238471673,
235
+ "eval_loss": 2.0551609992980957,
236
+ "eval_runtime": 7.3154,
237
+ "eval_samples_per_second": 207.508,
238
+ "eval_steps_per_second": 6.562,
239
+ "step": 250
240
+ },
241
+ {
242
+ "epoch": 0.68,
243
+ "grad_norm": 124.80367279052734,
244
+ "learning_rate": 1.5789473684210526e-06,
245
+ "loss": 2.0695,
246
+ "step": 260
247
+ },
248
+ {
249
+ "epoch": 0.71,
250
+ "grad_norm": 152.9394073486328,
251
+ "learning_rate": 1.4473684210526317e-06,
252
+ "loss": 1.9953,
253
+ "step": 270
254
+ },
255
+ {
256
+ "epoch": 0.74,
257
+ "grad_norm": 146.58970642089844,
258
+ "learning_rate": 1.3157894736842106e-06,
259
+ "loss": 1.8379,
260
+ "step": 280
261
+ },
262
+ {
263
+ "epoch": 0.76,
264
+ "grad_norm": 177.54376220703125,
265
+ "learning_rate": 1.1842105263157894e-06,
266
+ "loss": 1.9055,
267
+ "step": 290
268
+ },
269
+ {
270
+ "epoch": 0.79,
271
+ "grad_norm": 283.8413391113281,
272
+ "learning_rate": 1.0526315789473685e-06,
273
+ "loss": 1.7723,
274
+ "step": 300
275
+ },
276
+ {
277
+ "epoch": 0.79,
278
+ "eval_accuracy": 0.5263504611330698,
279
+ "eval_f1_macro": 0.422505143115707,
280
+ "eval_f1_micro": 0.5263504611330698,
281
+ "eval_loss": 1.7764842510223389,
282
+ "eval_runtime": 7.3136,
283
+ "eval_samples_per_second": 207.558,
284
+ "eval_steps_per_second": 6.563,
285
+ "step": 300
286
+ },
287
+ {
288
+ "epoch": 0.82,
289
+ "grad_norm": 137.7584686279297,
290
+ "learning_rate": 9.210526315789474e-07,
291
+ "loss": 1.7563,
292
+ "step": 310
293
+ },
294
+ {
295
+ "epoch": 0.84,
296
+ "grad_norm": 84.1349105834961,
297
+ "learning_rate": 7.894736842105263e-07,
298
+ "loss": 1.7305,
299
+ "step": 320
300
+ },
301
+ {
302
+ "epoch": 0.87,
303
+ "grad_norm": 113.17578887939453,
304
+ "learning_rate": 6.578947368421053e-07,
305
+ "loss": 1.7602,
306
+ "step": 330
307
+ },
308
+ {
309
+ "epoch": 0.89,
310
+ "grad_norm": 158.471923828125,
311
+ "learning_rate": 5.263157894736843e-07,
312
+ "loss": 1.6398,
313
+ "step": 340
314
+ },
315
+ {
316
+ "epoch": 0.92,
317
+ "grad_norm": 150.00511169433594,
318
+ "learning_rate": 3.9473684210526315e-07,
319
+ "loss": 1.7695,
320
+ "step": 350
321
+ },
322
+ {
323
+ "epoch": 0.92,
324
+ "eval_accuracy": 0.5658761528326746,
325
+ "eval_f1_macro": 0.4654710477619855,
326
+ "eval_f1_micro": 0.5658761528326746,
327
+ "eval_loss": 1.6451231241226196,
328
+ "eval_runtime": 7.4633,
329
+ "eval_samples_per_second": 203.396,
330
+ "eval_steps_per_second": 6.431,
331
+ "step": 350
332
+ },
333
+ {
334
+ "epoch": 0.95,
335
+ "grad_norm": 156.0194091796875,
336
+ "learning_rate": 2.6315789473684213e-07,
337
+ "loss": 1.5078,
338
+ "step": 360
339
+ },
340
+ {
341
+ "epoch": 0.97,
342
+ "grad_norm": 198.73739624023438,
343
+ "learning_rate": 1.3157894736842107e-07,
344
+ "loss": 1.8664,
345
+ "step": 370
346
+ },
347
+ {
348
+ "epoch": 1.0,
349
+ "grad_norm": 151.66551208496094,
350
+ "learning_rate": 0.0,
351
+ "loss": 1.5414,
352
+ "step": 380
353
+ },
354
+ {
355
+ "epoch": 1.0,
356
+ "step": 380,
357
+ "total_flos": 2.351107322727629e+16,
358
+ "train_loss": 2.480139802631579,
359
+ "train_runtime": 732.6694,
360
+ "train_samples_per_second": 16.575,
361
+ "train_steps_per_second": 0.519
362
+ }
363
+ ],
364
+ "logging_steps": 10,
365
+ "max_steps": 380,
366
+ "num_input_tokens_seen": 0,
367
+ "num_train_epochs": 1,
368
+ "save_steps": 50,
369
+ "total_flos": 2.351107322727629e+16,
370
+ "train_batch_size": 16,
371
+ "trial_name": null,
372
+ "trial_params": null
373
+ }
microsoft/phi_2_amazon/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:481d465118323c15678614aff061164e9c71cc30c0ec85efb3e3366cd4bf79b0
3
+ size 5944
microsoft/phi_2_amazon/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
microsoft/phi_2_patent/README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/phi-2
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: phi_2_patent
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # phi_2_patent
17
+
18
+ This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.9403
21
+ - Accuracy: 0.6678
22
+ - F1 Macro: 0.6213
23
+ - F1 Micro: 0.6678
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-06
43
+ - train_batch_size: 32
44
+ - eval_batch_size: 32
45
+ - seed: 42
46
+ - distributed_type: multi-GPU
47
+ - num_devices: 2
48
+ - total_train_batch_size: 64
49
+ - total_eval_batch_size: 64
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 3.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
58
+ | 1.9105 | 0.13 | 50 | 1.8338 | 0.3248 | 0.2207 | 0.3248 |
59
+ | 1.6023 | 0.26 | 100 | 1.6011 | 0.438 | 0.3087 | 0.438 |
60
+ | 1.4113 | 0.38 | 150 | 1.4239 | 0.4912 | 0.3599 | 0.4912 |
61
+ | 1.3062 | 0.51 | 200 | 1.2828 | 0.5498 | 0.4109 | 0.5498 |
62
+ | 1.2574 | 0.64 | 250 | 1.1801 | 0.5822 | 0.4702 | 0.5822 |
63
+ | 1.1687 | 0.77 | 300 | 1.1401 | 0.6032 | 0.4825 | 0.6032 |
64
+ | 1.1396 | 0.9 | 350 | 1.0853 | 0.613 | 0.5246 | 0.613 |
65
+ | 1.0529 | 1.02 | 400 | 1.0639 | 0.6226 | 0.5368 | 0.6226 |
66
+ | 1.0261 | 1.15 | 450 | 1.0742 | 0.6304 | 0.5449 | 0.6304 |
67
+ | 1.0068 | 1.28 | 500 | 1.0340 | 0.6444 | 0.5825 | 0.6444 |
68
+ | 0.975 | 1.41 | 550 | 1.0151 | 0.65 | 0.5777 | 0.65 |
69
+ | 0.966 | 1.53 | 600 | 1.0022 | 0.6498 | 0.5923 | 0.6498 |
70
+ | 1.0201 | 1.66 | 650 | 0.9899 | 0.6562 | 0.5854 | 0.6562 |
71
+ | 0.9346 | 1.79 | 700 | 0.9807 | 0.6598 | 0.5735 | 0.6598 |
72
+ | 0.9807 | 1.92 | 750 | 0.9694 | 0.6586 | 0.6004 | 0.6586 |
73
+ | 0.917 | 2.05 | 800 | 0.9664 | 0.6608 | 0.6086 | 0.6608 |
74
+ | 0.9268 | 2.17 | 850 | 0.9619 | 0.6626 | 0.6107 | 0.6626 |
75
+ | 1.0107 | 2.3 | 900 | 0.9548 | 0.6648 | 0.6156 | 0.6648 |
76
+ | 0.9378 | 2.43 | 950 | 0.9559 | 0.6656 | 0.6109 | 0.6656 |
77
+ | 0.9199 | 2.56 | 1000 | 0.9514 | 0.6658 | 0.6165 | 0.6658 |
78
+ | 0.8467 | 2.69 | 1050 | 0.9454 | 0.6714 | 0.6203 | 0.6714 |
79
+ | 0.8923 | 2.81 | 1100 | 0.9413 | 0.67 | 0.6206 | 0.67 |
80
+ | 0.9545 | 2.94 | 1150 | 0.9403 | 0.6678 | 0.6213 | 0.6678 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.39.0.dev0
86
+ - Pytorch 2.2.1+cu121
87
+ - Datasets 2.18.0
88
+ - Tokenizers 0.15.2
microsoft/phi_2_patent/added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
microsoft/phi_2_patent/all_results.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.6678,
4
+ "eval_f1_macro": 0.6212650261638899,
5
+ "eval_f1_micro": 0.6678,
6
+ "eval_loss": 0.9403125047683716,
7
+ "eval_runtime": 23.065,
8
+ "eval_samples": 5000,
9
+ "eval_samples_per_second": 216.779,
10
+ "eval_steps_per_second": 3.425,
11
+ "test_accuracy": 0.6608,
12
+ "test_f1_macro": 0.5928564932136258,
13
+ "test_f1_micro": 0.6608,
14
+ "test_loss": 0.9700124859809875,
15
+ "test_runtime": 23.7987,
16
+ "test_samples_per_second": 210.096,
17
+ "test_steps_per_second": 3.32,
18
+ "train_loss": 1.123963495044757,
19
+ "train_runtime": 3214.4035,
20
+ "train_samples": 25000,
21
+ "train_samples_per_second": 23.332,
22
+ "train_steps_per_second": 0.365
23
+ }
microsoft/phi_2_patent/checkpoint-1150/added_tokens.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "\t\t": 50294,
3
+ "\t\t\t": 50293,
4
+ "\t\t\t\t": 50292,
5
+ "\t\t\t\t\t": 50291,
6
+ "\t\t\t\t\t\t": 50290,
7
+ "\t\t\t\t\t\t\t": 50289,
8
+ "\t\t\t\t\t\t\t\t": 50288,
9
+ "\t\t\t\t\t\t\t\t\t": 50287,
10
+ " ": 50286,
11
+ " ": 50285,
12
+ " ": 50284,
13
+ " ": 50283,
14
+ " ": 50282,
15
+ " ": 50281,
16
+ " ": 50280,
17
+ " ": 50279,
18
+ " ": 50278,
19
+ " ": 50277,
20
+ " ": 50276,
21
+ " ": 50275,
22
+ " ": 50274,
23
+ " ": 50273,
24
+ " ": 50272,
25
+ " ": 50271,
26
+ " ": 50270,
27
+ " ": 50269,
28
+ " ": 50268,
29
+ " ": 50267,
30
+ " ": 50266,
31
+ " ": 50265,
32
+ " ": 50264,
33
+ " ": 50263,
34
+ " ": 50262,
35
+ " ": 50261,
36
+ " ": 50260,
37
+ " ": 50259,
38
+ " ": 50258,
39
+ " ": 50257
40
+ }
microsoft/phi_2_patent/checkpoint-1150/config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/phi-2",
3
+ "architectures": [
4
+ "PhiForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "microsoft/phi-2--configuration_phi.PhiConfig",
9
+ "AutoModelForCausalLM": "microsoft/phi-2--modeling_phi.PhiForCausalLM"
10
+ },
11
+ "bos_token_id": 50256,
12
+ "embd_pdrop": 0.0,
13
+ "eos_token_id": 50256,
14
+ "finetuning_task": "text-classification",
15
+ "hidden_act": "gelu_new",
16
+ "hidden_size": 2560,
17
+ "id2label": {
18
+ "0": "0",
19
+ "1": "1",
20
+ "2": "2",
21
+ "3": "3",
22
+ "4": "4",
23
+ "5": "5",
24
+ "6": "6",
25
+ "7": "7",
26
+ "8": "8"
27
+ },
28
+ "initializer_range": 0.02,
29
+ "intermediate_size": 10240,
30
+ "label2id": {
31
+ "0": 0,
32
+ "1": 1,
33
+ "2": 2,
34
+ "3": 3,
35
+ "4": 4,
36
+ "5": 5,
37
+ "6": 6,
38
+ "7": 7,
39
+ "8": 8
40
+ },
41
+ "layer_norm_eps": 1e-05,
42
+ "max_position_embeddings": 2048,
43
+ "model_type": "phi",
44
+ "num_attention_heads": 32,
45
+ "num_hidden_layers": 32,
46
+ "num_key_value_heads": 32,
47
+ "pad_token_id": 50256,
48
+ "partial_rotary_factor": 0.4,
49
+ "problem_type": "single_label_classification",
50
+ "qk_layernorm": false,
51
+ "resid_pdrop": 0.1,
52
+ "rope_scaling": null,
53
+ "rope_theta": 10000.0,
54
+ "tie_word_embeddings": false,
55
+ "torch_dtype": "bfloat16",
56
+ "transformers_version": "4.39.0.dev0",
57
+ "use_cache": true,
58
+ "vocab_size": 50295
59
+ }
microsoft/phi_2_patent/checkpoint-1150/global_step1150/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6819dabe2e53263d22ed098b588d2c4e3086c3bd1eb3b5fc27a513ce8c419646
3
+ size 15877622988
microsoft/phi_2_patent/checkpoint-1150/global_step1150/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4ac7b38f3951f740fa27e7c1d573c6d229d871acca14255c66bf01d276be6c1
3
+ size 15877623564
microsoft/phi_2_patent/checkpoint-1150/global_step1150/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcfbe1c9076e6f26c893335173f91dad6833cb81a6305fe5050e971e3ea14d87
3
+ size 5292648760
microsoft/phi_2_patent/checkpoint-1150/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1150
microsoft/phi_2_patent/checkpoint-1150/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
microsoft/phi_2_patent/checkpoint-1150/pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87ea5c4009f2f350955dfddc054525aeabf70e4e75856ae58821d5cde45a5c96
3
+ size 4991046159
microsoft/phi_2_patent/checkpoint-1150/pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ad67ffa4f67d3cc0bd2262a16d5088dadb570060fc928e675da6aa227bed494
3
+ size 301639412