Upload folder using huggingface_hub
Browse files- Qwen/Qwen1.5_1.8B_ledgar/README.md +93 -0
- Qwen/Qwen1.5_1.8B_ledgar/added_tokens.json +5 -0
- Qwen/Qwen1.5_1.8B_ledgar/all_results.json +23 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/added_tokens.json +5 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/config.json +235 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/global_step1800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/global_step1800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/global_step1800/mp_rank_00_model_states.pt +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/latest +1 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/merges.txt +0 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/model.safetensors +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/rng_state_0.pth +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/rng_state_1.pth +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/scheduler.pt +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/special_tokens_map.json +14 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/tokenizer.json +0 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/tokenizer_config.json +43 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/trainer_state.json +723 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/training_args.bin +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/vocab.json +0 -0
- Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/zero_to_fp32.py +604 -0
- Qwen/Qwen1.5_1.8B_ledgar/config.json +235 -0
- Qwen/Qwen1.5_1.8B_ledgar/eval_results.json +11 -0
- Qwen/Qwen1.5_1.8B_ledgar/merges.txt +0 -0
- Qwen/Qwen1.5_1.8B_ledgar/model.safetensors +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/run.log +4 -0
- Qwen/Qwen1.5_1.8B_ledgar/special_tokens_map.json +14 -0
- Qwen/Qwen1.5_1.8B_ledgar/test_results.json +10 -0
- Qwen/Qwen1.5_1.8B_ledgar/tokenizer.json +0 -0
- Qwen/Qwen1.5_1.8B_ledgar/tokenizer_config.json +43 -0
- Qwen/Qwen1.5_1.8B_ledgar/train_results.json +8 -0
- Qwen/Qwen1.5_1.8B_ledgar/trainer_state.json +1122 -0
- Qwen/Qwen1.5_1.8B_ledgar/training_args.bin +3 -0
- Qwen/Qwen1.5_1.8B_ledgar/vocab.json +0 -0
Qwen/Qwen1.5_1.8B_ledgar/README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: Qwen/Qwen1.5-1.8B
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: Qwen1.5_1.8B_ledgar
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# Qwen1.5_1.8B_ledgar
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.5064
|
21 |
+
- Accuracy: 0.8669
|
22 |
+
- F1 Macro: 0.7902
|
23 |
+
- F1 Micro: 0.8669
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 5e-06
|
43 |
+
- train_batch_size: 32
|
44 |
+
- eval_batch_size: 32
|
45 |
+
- seed: 42
|
46 |
+
- distributed_type: multi-GPU
|
47 |
+
- num_devices: 2
|
48 |
+
- total_train_batch_size: 64
|
49 |
+
- total_eval_batch_size: 64
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 3.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|
|
58 |
+
| 1.3077 | 0.11 | 100 | 1.0945 | 0.7277 | 0.5771 | 0.7277 |
|
59 |
+
| 0.8627 | 0.21 | 200 | 0.8368 | 0.7907 | 0.6657 | 0.7907 |
|
60 |
+
| 0.7179 | 0.32 | 300 | 0.7824 | 0.7971 | 0.6862 | 0.7971 |
|
61 |
+
| 0.6961 | 0.43 | 400 | 0.6952 | 0.8138 | 0.6992 | 0.8138 |
|
62 |
+
| 0.745 | 0.53 | 500 | 0.6719 | 0.8121 | 0.7034 | 0.8121 |
|
63 |
+
| 0.6505 | 0.64 | 600 | 0.6220 | 0.834 | 0.7469 | 0.834 |
|
64 |
+
| 0.5914 | 0.75 | 700 | 0.6110 | 0.8362 | 0.7411 | 0.8362 |
|
65 |
+
| 0.5837 | 0.85 | 800 | 0.5767 | 0.8385 | 0.7413 | 0.8385 |
|
66 |
+
| 0.5218 | 0.96 | 900 | 0.5365 | 0.849 | 0.7703 | 0.849 |
|
67 |
+
| 0.2632 | 1.07 | 1000 | 0.5504 | 0.8562 | 0.7684 | 0.8562 |
|
68 |
+
| 0.2607 | 1.17 | 1100 | 0.5497 | 0.8525 | 0.7657 | 0.8525 |
|
69 |
+
| 0.274 | 1.28 | 1200 | 0.5439 | 0.8584 | 0.7746 | 0.8584 |
|
70 |
+
| 0.2216 | 1.39 | 1300 | 0.5687 | 0.8563 | 0.7754 | 0.8563 |
|
71 |
+
| 0.2044 | 1.49 | 1400 | 0.5385 | 0.861 | 0.7820 | 0.861 |
|
72 |
+
| 0.2508 | 1.6 | 1500 | 0.5658 | 0.8577 | 0.7711 | 0.8577 |
|
73 |
+
| 0.2513 | 1.71 | 1600 | 0.5367 | 0.8589 | 0.7872 | 0.8589 |
|
74 |
+
| 0.2787 | 1.81 | 1700 | 0.5133 | 0.8653 | 0.7903 | 0.8653 |
|
75 |
+
| 0.2357 | 1.92 | 1800 | 0.5064 | 0.8669 | 0.7902 | 0.8669 |
|
76 |
+
| 0.049 | 2.03 | 1900 | 0.5344 | 0.8719 | 0.7978 | 0.8719 |
|
77 |
+
| 0.0298 | 2.13 | 2000 | 0.5762 | 0.8737 | 0.7992 | 0.8737 |
|
78 |
+
| 0.0427 | 2.24 | 2100 | 0.5961 | 0.8708 | 0.7976 | 0.8708 |
|
79 |
+
| 0.036 | 2.35 | 2200 | 0.6128 | 0.8728 | 0.7988 | 0.8728 |
|
80 |
+
| 0.0551 | 2.45 | 2300 | 0.6165 | 0.8708 | 0.7976 | 0.8708 |
|
81 |
+
| 0.0392 | 2.56 | 2400 | 0.6023 | 0.8749 | 0.8038 | 0.8749 |
|
82 |
+
| 0.0364 | 2.67 | 2500 | 0.6168 | 0.8729 | 0.8001 | 0.8729 |
|
83 |
+
| 0.0416 | 2.77 | 2600 | 0.6103 | 0.8753 | 0.8048 | 0.8753 |
|
84 |
+
| 0.0353 | 2.88 | 2700 | 0.6118 | 0.8749 | 0.8054 | 0.8749 |
|
85 |
+
| 0.0308 | 2.99 | 2800 | 0.6114 | 0.875 | 0.8057 | 0.875 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.39.0.dev0
|
91 |
+
- Pytorch 2.2.1+cu121
|
92 |
+
- Datasets 2.18.0
|
93 |
+
- Tokenizers 0.15.2
|
Qwen/Qwen1.5_1.8B_ledgar/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/all_results.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8669,
|
4 |
+
"eval_f1_macro": 0.7902403947168268,
|
5 |
+
"eval_f1_micro": 0.8669,
|
6 |
+
"eval_loss": 0.5063937306404114,
|
7 |
+
"eval_runtime": 24.4305,
|
8 |
+
"eval_samples": 10000,
|
9 |
+
"eval_samples_per_second": 409.324,
|
10 |
+
"eval_steps_per_second": 6.426,
|
11 |
+
"test_accuracy": 0.8664,
|
12 |
+
"test_f1_macro": 0.7974226514742132,
|
13 |
+
"test_f1_micro": 0.8664,
|
14 |
+
"test_loss": 0.532435953617096,
|
15 |
+
"test_runtime": 25.4113,
|
16 |
+
"test_samples_per_second": 393.525,
|
17 |
+
"test_steps_per_second": 6.178,
|
18 |
+
"train_loss": 0.42635450247932005,
|
19 |
+
"train_runtime": 3623.2348,
|
20 |
+
"train_samples": 60000,
|
21 |
+
"train_samples_per_second": 49.679,
|
22 |
+
"train_steps_per_second": 0.777
|
23 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/config.json
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen1.5-1.8B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"finetuning_task": "text-classification",
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2048,
|
12 |
+
"id2label": {
|
13 |
+
"0": "0",
|
14 |
+
"1": "1",
|
15 |
+
"2": "10",
|
16 |
+
"3": "11",
|
17 |
+
"4": "12",
|
18 |
+
"5": "13",
|
19 |
+
"6": "14",
|
20 |
+
"7": "15",
|
21 |
+
"8": "16",
|
22 |
+
"9": "17",
|
23 |
+
"10": "18",
|
24 |
+
"11": "19",
|
25 |
+
"12": "2",
|
26 |
+
"13": "20",
|
27 |
+
"14": "21",
|
28 |
+
"15": "22",
|
29 |
+
"16": "23",
|
30 |
+
"17": "24",
|
31 |
+
"18": "25",
|
32 |
+
"19": "26",
|
33 |
+
"20": "27",
|
34 |
+
"21": "28",
|
35 |
+
"22": "29",
|
36 |
+
"23": "3",
|
37 |
+
"24": "30",
|
38 |
+
"25": "31",
|
39 |
+
"26": "32",
|
40 |
+
"27": "33",
|
41 |
+
"28": "34",
|
42 |
+
"29": "35",
|
43 |
+
"30": "36",
|
44 |
+
"31": "37",
|
45 |
+
"32": "38",
|
46 |
+
"33": "39",
|
47 |
+
"34": "4",
|
48 |
+
"35": "40",
|
49 |
+
"36": "41",
|
50 |
+
"37": "42",
|
51 |
+
"38": "43",
|
52 |
+
"39": "44",
|
53 |
+
"40": "45",
|
54 |
+
"41": "46",
|
55 |
+
"42": "47",
|
56 |
+
"43": "48",
|
57 |
+
"44": "49",
|
58 |
+
"45": "5",
|
59 |
+
"46": "50",
|
60 |
+
"47": "51",
|
61 |
+
"48": "52",
|
62 |
+
"49": "53",
|
63 |
+
"50": "54",
|
64 |
+
"51": "55",
|
65 |
+
"52": "56",
|
66 |
+
"53": "57",
|
67 |
+
"54": "58",
|
68 |
+
"55": "59",
|
69 |
+
"56": "6",
|
70 |
+
"57": "60",
|
71 |
+
"58": "61",
|
72 |
+
"59": "62",
|
73 |
+
"60": "63",
|
74 |
+
"61": "64",
|
75 |
+
"62": "65",
|
76 |
+
"63": "66",
|
77 |
+
"64": "67",
|
78 |
+
"65": "68",
|
79 |
+
"66": "69",
|
80 |
+
"67": "7",
|
81 |
+
"68": "70",
|
82 |
+
"69": "71",
|
83 |
+
"70": "72",
|
84 |
+
"71": "73",
|
85 |
+
"72": "74",
|
86 |
+
"73": "75",
|
87 |
+
"74": "76",
|
88 |
+
"75": "77",
|
89 |
+
"76": "78",
|
90 |
+
"77": "79",
|
91 |
+
"78": "8",
|
92 |
+
"79": "80",
|
93 |
+
"80": "81",
|
94 |
+
"81": "82",
|
95 |
+
"82": "83",
|
96 |
+
"83": "84",
|
97 |
+
"84": "85",
|
98 |
+
"85": "86",
|
99 |
+
"86": "87",
|
100 |
+
"87": "88",
|
101 |
+
"88": "89",
|
102 |
+
"89": "9",
|
103 |
+
"90": "90",
|
104 |
+
"91": "91",
|
105 |
+
"92": "92",
|
106 |
+
"93": "93",
|
107 |
+
"94": "94",
|
108 |
+
"95": "95",
|
109 |
+
"96": "96",
|
110 |
+
"97": "97",
|
111 |
+
"98": "98",
|
112 |
+
"99": "99"
|
113 |
+
},
|
114 |
+
"initializer_range": 0.02,
|
115 |
+
"intermediate_size": 5504,
|
116 |
+
"label2id": {
|
117 |
+
"0": 0,
|
118 |
+
"1": 1,
|
119 |
+
"10": 2,
|
120 |
+
"11": 3,
|
121 |
+
"12": 4,
|
122 |
+
"13": 5,
|
123 |
+
"14": 6,
|
124 |
+
"15": 7,
|
125 |
+
"16": 8,
|
126 |
+
"17": 9,
|
127 |
+
"18": 10,
|
128 |
+
"19": 11,
|
129 |
+
"2": 12,
|
130 |
+
"20": 13,
|
131 |
+
"21": 14,
|
132 |
+
"22": 15,
|
133 |
+
"23": 16,
|
134 |
+
"24": 17,
|
135 |
+
"25": 18,
|
136 |
+
"26": 19,
|
137 |
+
"27": 20,
|
138 |
+
"28": 21,
|
139 |
+
"29": 22,
|
140 |
+
"3": 23,
|
141 |
+
"30": 24,
|
142 |
+
"31": 25,
|
143 |
+
"32": 26,
|
144 |
+
"33": 27,
|
145 |
+
"34": 28,
|
146 |
+
"35": 29,
|
147 |
+
"36": 30,
|
148 |
+
"37": 31,
|
149 |
+
"38": 32,
|
150 |
+
"39": 33,
|
151 |
+
"4": 34,
|
152 |
+
"40": 35,
|
153 |
+
"41": 36,
|
154 |
+
"42": 37,
|
155 |
+
"43": 38,
|
156 |
+
"44": 39,
|
157 |
+
"45": 40,
|
158 |
+
"46": 41,
|
159 |
+
"47": 42,
|
160 |
+
"48": 43,
|
161 |
+
"49": 44,
|
162 |
+
"5": 45,
|
163 |
+
"50": 46,
|
164 |
+
"51": 47,
|
165 |
+
"52": 48,
|
166 |
+
"53": 49,
|
167 |
+
"54": 50,
|
168 |
+
"55": 51,
|
169 |
+
"56": 52,
|
170 |
+
"57": 53,
|
171 |
+
"58": 54,
|
172 |
+
"59": 55,
|
173 |
+
"6": 56,
|
174 |
+
"60": 57,
|
175 |
+
"61": 58,
|
176 |
+
"62": 59,
|
177 |
+
"63": 60,
|
178 |
+
"64": 61,
|
179 |
+
"65": 62,
|
180 |
+
"66": 63,
|
181 |
+
"67": 64,
|
182 |
+
"68": 65,
|
183 |
+
"69": 66,
|
184 |
+
"7": 67,
|
185 |
+
"70": 68,
|
186 |
+
"71": 69,
|
187 |
+
"72": 70,
|
188 |
+
"73": 71,
|
189 |
+
"74": 72,
|
190 |
+
"75": 73,
|
191 |
+
"76": 74,
|
192 |
+
"77": 75,
|
193 |
+
"78": 76,
|
194 |
+
"79": 77,
|
195 |
+
"8": 78,
|
196 |
+
"80": 79,
|
197 |
+
"81": 80,
|
198 |
+
"82": 81,
|
199 |
+
"83": 82,
|
200 |
+
"84": 83,
|
201 |
+
"85": 84,
|
202 |
+
"86": 85,
|
203 |
+
"87": 86,
|
204 |
+
"88": 87,
|
205 |
+
"89": 88,
|
206 |
+
"9": 89,
|
207 |
+
"90": 90,
|
208 |
+
"91": 91,
|
209 |
+
"92": 92,
|
210 |
+
"93": 93,
|
211 |
+
"94": 94,
|
212 |
+
"95": 95,
|
213 |
+
"96": 96,
|
214 |
+
"97": 97,
|
215 |
+
"98": 98,
|
216 |
+
"99": 99
|
217 |
+
},
|
218 |
+
"max_position_embeddings": 32768,
|
219 |
+
"max_window_layers": 21,
|
220 |
+
"model_type": "qwen2",
|
221 |
+
"num_attention_heads": 16,
|
222 |
+
"num_hidden_layers": 24,
|
223 |
+
"num_key_value_heads": 16,
|
224 |
+
"pad_token_id": 151643,
|
225 |
+
"problem_type": "single_label_classification",
|
226 |
+
"rms_norm_eps": 1e-06,
|
227 |
+
"rope_theta": 1000000.0,
|
228 |
+
"sliding_window": 32768,
|
229 |
+
"tie_word_embeddings": false,
|
230 |
+
"torch_dtype": "bfloat16",
|
231 |
+
"transformers_version": "4.39.0.dev0",
|
232 |
+
"use_cache": true,
|
233 |
+
"use_sliding_window": false,
|
234 |
+
"vocab_size": 151646
|
235 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/global_step1800/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef1b558ae70d0d44599d87ecd1dfb077c81a23f338132f079e36f7b5290e7c08
|
3 |
+
size 9151661452
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/global_step1800/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:370b65eed061f4813c54cd3f474407c386b95d6eb5825fc476c6a954ed387a5b
|
3 |
+
size 9151666316
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/global_step1800/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:122da52fa34439283e1b14257cdd1cdeb266e23b92ffc56b8f05f799ec83fc3e
|
3 |
+
size 3050629496
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1800
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6be1da9a3d742bcd4f56af0dd627ec82b2b529a0f3a3259561a3da60f4f2dffc
|
3 |
+
size 3050582504
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65f5ad184cd93fcb3486b7d9a9620ac3dd75a9ac32473b69036d8a9ea5d74a35
|
3 |
+
size 14512
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca245034f0fb0f22361e0627eba02734337b9a09a6d7dfcd1d3684fc6f29790d
|
3 |
+
size 14512
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73fb8dcc2e911a74681d6256ed942bb17afce93f5ee2a12d46277718ba595f5e
|
3 |
+
size 1064
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/trainer_state.json
ADDED
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.5063937306404114,
|
3 |
+
"best_model_checkpoint": "../../experiments_checkpoints/MAdAiLab/Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800",
|
4 |
+
"epoch": 1.9189765458422174,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 1800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"grad_norm": 80.4836196899414,
|
14 |
+
"learning_rate": 4.9555792466240235e-06,
|
15 |
+
"loss": 7.9887,
|
16 |
+
"step": 25
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05,
|
20 |
+
"grad_norm": 60.927364349365234,
|
21 |
+
"learning_rate": 4.911158493248046e-06,
|
22 |
+
"loss": 3.1908,
|
23 |
+
"step": 50
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.08,
|
27 |
+
"grad_norm": 49.68091583251953,
|
28 |
+
"learning_rate": 4.866737739872069e-06,
|
29 |
+
"loss": 1.7183,
|
30 |
+
"step": 75
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.11,
|
34 |
+
"grad_norm": 55.176666259765625,
|
35 |
+
"learning_rate": 4.822316986496091e-06,
|
36 |
+
"loss": 1.3077,
|
37 |
+
"step": 100
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.11,
|
41 |
+
"eval_accuracy": 0.7277,
|
42 |
+
"eval_f1_macro": 0.5770831474844406,
|
43 |
+
"eval_f1_micro": 0.7277,
|
44 |
+
"eval_loss": 1.0944937467575073,
|
45 |
+
"eval_runtime": 25.447,
|
46 |
+
"eval_samples_per_second": 392.973,
|
47 |
+
"eval_steps_per_second": 6.17,
|
48 |
+
"step": 100
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 0.13,
|
52 |
+
"grad_norm": 46.64506530761719,
|
53 |
+
"learning_rate": 4.777896233120114e-06,
|
54 |
+
"loss": 1.1393,
|
55 |
+
"step": 125
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.16,
|
59 |
+
"grad_norm": 41.11891174316406,
|
60 |
+
"learning_rate": 4.733475479744136e-06,
|
61 |
+
"loss": 1.0243,
|
62 |
+
"step": 150
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.19,
|
66 |
+
"grad_norm": 34.20009994506836,
|
67 |
+
"learning_rate": 4.6890547263681595e-06,
|
68 |
+
"loss": 0.9005,
|
69 |
+
"step": 175
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.21,
|
73 |
+
"grad_norm": 38.80377197265625,
|
74 |
+
"learning_rate": 4.644633972992183e-06,
|
75 |
+
"loss": 0.8627,
|
76 |
+
"step": 200
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.21,
|
80 |
+
"eval_accuracy": 0.7907,
|
81 |
+
"eval_f1_macro": 0.6657039157603262,
|
82 |
+
"eval_f1_micro": 0.7907,
|
83 |
+
"eval_loss": 0.8368468880653381,
|
84 |
+
"eval_runtime": 25.9484,
|
85 |
+
"eval_samples_per_second": 385.38,
|
86 |
+
"eval_steps_per_second": 6.05,
|
87 |
+
"step": 200
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.24,
|
91 |
+
"grad_norm": 34.973506927490234,
|
92 |
+
"learning_rate": 4.600213219616206e-06,
|
93 |
+
"loss": 0.7896,
|
94 |
+
"step": 225
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.27,
|
98 |
+
"grad_norm": 29.98388671875,
|
99 |
+
"learning_rate": 4.555792466240228e-06,
|
100 |
+
"loss": 0.8307,
|
101 |
+
"step": 250
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.29,
|
105 |
+
"grad_norm": 27.09973907470703,
|
106 |
+
"learning_rate": 4.51137171286425e-06,
|
107 |
+
"loss": 0.7846,
|
108 |
+
"step": 275
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.32,
|
112 |
+
"grad_norm": 36.151161193847656,
|
113 |
+
"learning_rate": 4.466950959488273e-06,
|
114 |
+
"loss": 0.7179,
|
115 |
+
"step": 300
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.32,
|
119 |
+
"eval_accuracy": 0.7971,
|
120 |
+
"eval_f1_macro": 0.6861778340669753,
|
121 |
+
"eval_f1_micro": 0.7971,
|
122 |
+
"eval_loss": 0.7824062705039978,
|
123 |
+
"eval_runtime": 25.9003,
|
124 |
+
"eval_samples_per_second": 386.095,
|
125 |
+
"eval_steps_per_second": 6.062,
|
126 |
+
"step": 300
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"epoch": 0.35,
|
130 |
+
"grad_norm": 33.09822463989258,
|
131 |
+
"learning_rate": 4.422530206112296e-06,
|
132 |
+
"loss": 0.7133,
|
133 |
+
"step": 325
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 0.37,
|
137 |
+
"grad_norm": 35.52923583984375,
|
138 |
+
"learning_rate": 4.378109452736319e-06,
|
139 |
+
"loss": 0.7354,
|
140 |
+
"step": 350
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.4,
|
144 |
+
"grad_norm": 39.79545211791992,
|
145 |
+
"learning_rate": 4.333688699360342e-06,
|
146 |
+
"loss": 0.6619,
|
147 |
+
"step": 375
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.43,
|
151 |
+
"grad_norm": 30.13161849975586,
|
152 |
+
"learning_rate": 4.289267945984365e-06,
|
153 |
+
"loss": 0.6961,
|
154 |
+
"step": 400
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.43,
|
158 |
+
"eval_accuracy": 0.8138,
|
159 |
+
"eval_f1_macro": 0.6992465625213966,
|
160 |
+
"eval_f1_micro": 0.8138,
|
161 |
+
"eval_loss": 0.6951531171798706,
|
162 |
+
"eval_runtime": 25.6082,
|
163 |
+
"eval_samples_per_second": 390.5,
|
164 |
+
"eval_steps_per_second": 6.131,
|
165 |
+
"step": 400
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.45,
|
169 |
+
"grad_norm": 27.575519561767578,
|
170 |
+
"learning_rate": 4.244847192608387e-06,
|
171 |
+
"loss": 0.7162,
|
172 |
+
"step": 425
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.48,
|
176 |
+
"grad_norm": 35.084754943847656,
|
177 |
+
"learning_rate": 4.200426439232409e-06,
|
178 |
+
"loss": 0.7722,
|
179 |
+
"step": 450
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.51,
|
183 |
+
"grad_norm": 28.47511863708496,
|
184 |
+
"learning_rate": 4.156005685856432e-06,
|
185 |
+
"loss": 0.6866,
|
186 |
+
"step": 475
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.53,
|
190 |
+
"grad_norm": 32.34709548950195,
|
191 |
+
"learning_rate": 4.1115849324804554e-06,
|
192 |
+
"loss": 0.745,
|
193 |
+
"step": 500
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.53,
|
197 |
+
"eval_accuracy": 0.8121,
|
198 |
+
"eval_f1_macro": 0.7033560293953169,
|
199 |
+
"eval_f1_micro": 0.8121,
|
200 |
+
"eval_loss": 0.6718780994415283,
|
201 |
+
"eval_runtime": 25.9161,
|
202 |
+
"eval_samples_per_second": 385.86,
|
203 |
+
"eval_steps_per_second": 6.058,
|
204 |
+
"step": 500
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.56,
|
208 |
+
"grad_norm": 25.5845890045166,
|
209 |
+
"learning_rate": 4.067164179104478e-06,
|
210 |
+
"loss": 0.6535,
|
211 |
+
"step": 525
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.59,
|
215 |
+
"grad_norm": 22.466503143310547,
|
216 |
+
"learning_rate": 4.022743425728501e-06,
|
217 |
+
"loss": 0.5969,
|
218 |
+
"step": 550
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.61,
|
222 |
+
"grad_norm": 27.53134536743164,
|
223 |
+
"learning_rate": 3.978322672352524e-06,
|
224 |
+
"loss": 0.5926,
|
225 |
+
"step": 575
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.64,
|
229 |
+
"grad_norm": 31.356454849243164,
|
230 |
+
"learning_rate": 3.933901918976546e-06,
|
231 |
+
"loss": 0.6505,
|
232 |
+
"step": 600
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 0.64,
|
236 |
+
"eval_accuracy": 0.834,
|
237 |
+
"eval_f1_macro": 0.7469091035082649,
|
238 |
+
"eval_f1_micro": 0.834,
|
239 |
+
"eval_loss": 0.6219750046730042,
|
240 |
+
"eval_runtime": 25.9316,
|
241 |
+
"eval_samples_per_second": 385.63,
|
242 |
+
"eval_steps_per_second": 6.054,
|
243 |
+
"step": 600
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.67,
|
247 |
+
"grad_norm": 37.17654800415039,
|
248 |
+
"learning_rate": 3.889481165600569e-06,
|
249 |
+
"loss": 0.6171,
|
250 |
+
"step": 625
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.69,
|
254 |
+
"grad_norm": 26.71038055419922,
|
255 |
+
"learning_rate": 3.8450604122245914e-06,
|
256 |
+
"loss": 0.6218,
|
257 |
+
"step": 650
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.72,
|
261 |
+
"grad_norm": 27.787952423095703,
|
262 |
+
"learning_rate": 3.8006396588486145e-06,
|
263 |
+
"loss": 0.6124,
|
264 |
+
"step": 675
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.75,
|
268 |
+
"grad_norm": 30.405912399291992,
|
269 |
+
"learning_rate": 3.756218905472637e-06,
|
270 |
+
"loss": 0.5914,
|
271 |
+
"step": 700
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.75,
|
275 |
+
"eval_accuracy": 0.8362,
|
276 |
+
"eval_f1_macro": 0.7410957777496914,
|
277 |
+
"eval_f1_micro": 0.8362,
|
278 |
+
"eval_loss": 0.6109625101089478,
|
279 |
+
"eval_runtime": 25.6247,
|
280 |
+
"eval_samples_per_second": 390.248,
|
281 |
+
"eval_steps_per_second": 6.127,
|
282 |
+
"step": 700
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.77,
|
286 |
+
"grad_norm": 30.52012062072754,
|
287 |
+
"learning_rate": 3.71179815209666e-06,
|
288 |
+
"loss": 0.5711,
|
289 |
+
"step": 725
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.8,
|
293 |
+
"grad_norm": 30.88004493713379,
|
294 |
+
"learning_rate": 3.667377398720683e-06,
|
295 |
+
"loss": 0.6695,
|
296 |
+
"step": 750
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.83,
|
300 |
+
"grad_norm": 22.504459381103516,
|
301 |
+
"learning_rate": 3.622956645344705e-06,
|
302 |
+
"loss": 0.5731,
|
303 |
+
"step": 775
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.85,
|
307 |
+
"grad_norm": 21.515512466430664,
|
308 |
+
"learning_rate": 3.578535891968728e-06,
|
309 |
+
"loss": 0.5837,
|
310 |
+
"step": 800
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.85,
|
314 |
+
"eval_accuracy": 0.8385,
|
315 |
+
"eval_f1_macro": 0.7413235492734335,
|
316 |
+
"eval_f1_micro": 0.8385,
|
317 |
+
"eval_loss": 0.5766780972480774,
|
318 |
+
"eval_runtime": 25.6608,
|
319 |
+
"eval_samples_per_second": 389.7,
|
320 |
+
"eval_steps_per_second": 6.118,
|
321 |
+
"step": 800
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.88,
|
325 |
+
"grad_norm": 30.9660587310791,
|
326 |
+
"learning_rate": 3.534115138592751e-06,
|
327 |
+
"loss": 0.6085,
|
328 |
+
"step": 825
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.91,
|
332 |
+
"grad_norm": 18.883647918701172,
|
333 |
+
"learning_rate": 3.4896943852167736e-06,
|
334 |
+
"loss": 0.5121,
|
335 |
+
"step": 850
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.93,
|
339 |
+
"grad_norm": 24.548561096191406,
|
340 |
+
"learning_rate": 3.4452736318407963e-06,
|
341 |
+
"loss": 0.5621,
|
342 |
+
"step": 875
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.96,
|
346 |
+
"grad_norm": 29.833791732788086,
|
347 |
+
"learning_rate": 3.4008528784648194e-06,
|
348 |
+
"loss": 0.5218,
|
349 |
+
"step": 900
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.96,
|
353 |
+
"eval_accuracy": 0.849,
|
354 |
+
"eval_f1_macro": 0.7702797685808792,
|
355 |
+
"eval_f1_micro": 0.849,
|
356 |
+
"eval_loss": 0.5365203022956848,
|
357 |
+
"eval_runtime": 25.9091,
|
358 |
+
"eval_samples_per_second": 385.964,
|
359 |
+
"eval_steps_per_second": 6.06,
|
360 |
+
"step": 900
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.99,
|
364 |
+
"grad_norm": 27.948928833007812,
|
365 |
+
"learning_rate": 3.3564321250888416e-06,
|
366 |
+
"loss": 0.5681,
|
367 |
+
"step": 925
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 1.01,
|
371 |
+
"grad_norm": 19.800880432128906,
|
372 |
+
"learning_rate": 3.3120113717128643e-06,
|
373 |
+
"loss": 0.4014,
|
374 |
+
"step": 950
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.04,
|
378 |
+
"grad_norm": 19.333465576171875,
|
379 |
+
"learning_rate": 3.2675906183368874e-06,
|
380 |
+
"loss": 0.2795,
|
381 |
+
"step": 975
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.07,
|
385 |
+
"grad_norm": 22.315195083618164,
|
386 |
+
"learning_rate": 3.22316986496091e-06,
|
387 |
+
"loss": 0.2632,
|
388 |
+
"step": 1000
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 1.07,
|
392 |
+
"eval_accuracy": 0.8562,
|
393 |
+
"eval_f1_macro": 0.7683569808757446,
|
394 |
+
"eval_f1_micro": 0.8562,
|
395 |
+
"eval_loss": 0.5503664016723633,
|
396 |
+
"eval_runtime": 25.5198,
|
397 |
+
"eval_samples_per_second": 391.852,
|
398 |
+
"eval_steps_per_second": 6.152,
|
399 |
+
"step": 1000
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 1.09,
|
403 |
+
"grad_norm": 24.819501876831055,
|
404 |
+
"learning_rate": 3.1787491115849327e-06,
|
405 |
+
"loss": 0.2532,
|
406 |
+
"step": 1025
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 1.12,
|
410 |
+
"grad_norm": 21.534936904907227,
|
411 |
+
"learning_rate": 3.1343283582089558e-06,
|
412 |
+
"loss": 0.2311,
|
413 |
+
"step": 1050
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 1.15,
|
417 |
+
"grad_norm": 24.088809967041016,
|
418 |
+
"learning_rate": 3.0899076048329785e-06,
|
419 |
+
"loss": 0.3134,
|
420 |
+
"step": 1075
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 1.17,
|
424 |
+
"grad_norm": 27.605493545532227,
|
425 |
+
"learning_rate": 3.0454868514570007e-06,
|
426 |
+
"loss": 0.2607,
|
427 |
+
"step": 1100
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 1.17,
|
431 |
+
"eval_accuracy": 0.8525,
|
432 |
+
"eval_f1_macro": 0.7656891626030512,
|
433 |
+
"eval_f1_micro": 0.8525,
|
434 |
+
"eval_loss": 0.5496523380279541,
|
435 |
+
"eval_runtime": 25.7081,
|
436 |
+
"eval_samples_per_second": 388.982,
|
437 |
+
"eval_steps_per_second": 6.107,
|
438 |
+
"step": 1100
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 1.2,
|
442 |
+
"grad_norm": 22.955158233642578,
|
443 |
+
"learning_rate": 3.0010660980810234e-06,
|
444 |
+
"loss": 0.2674,
|
445 |
+
"step": 1125
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 1.23,
|
449 |
+
"grad_norm": 19.089893341064453,
|
450 |
+
"learning_rate": 2.9566453447050464e-06,
|
451 |
+
"loss": 0.2074,
|
452 |
+
"step": 1150
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.25,
|
456 |
+
"grad_norm": 19.285688400268555,
|
457 |
+
"learning_rate": 2.912224591329069e-06,
|
458 |
+
"loss": 0.2488,
|
459 |
+
"step": 1175
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.28,
|
463 |
+
"grad_norm": 23.45233726501465,
|
464 |
+
"learning_rate": 2.867803837953092e-06,
|
465 |
+
"loss": 0.274,
|
466 |
+
"step": 1200
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 1.28,
|
470 |
+
"eval_accuracy": 0.8584,
|
471 |
+
"eval_f1_macro": 0.7746299057445165,
|
472 |
+
"eval_f1_micro": 0.8584,
|
473 |
+
"eval_loss": 0.5439000129699707,
|
474 |
+
"eval_runtime": 25.9014,
|
475 |
+
"eval_samples_per_second": 386.079,
|
476 |
+
"eval_steps_per_second": 6.061,
|
477 |
+
"step": 1200
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 1.31,
|
481 |
+
"grad_norm": 31.231454849243164,
|
482 |
+
"learning_rate": 2.823383084577115e-06,
|
483 |
+
"loss": 0.2624,
|
484 |
+
"step": 1225
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 1.33,
|
488 |
+
"grad_norm": 28.1010799407959,
|
489 |
+
"learning_rate": 2.7789623312011375e-06,
|
490 |
+
"loss": 0.2992,
|
491 |
+
"step": 1250
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 1.36,
|
495 |
+
"grad_norm": 30.002384185791016,
|
496 |
+
"learning_rate": 2.7345415778251598e-06,
|
497 |
+
"loss": 0.2589,
|
498 |
+
"step": 1275
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 1.39,
|
502 |
+
"grad_norm": 23.61323356628418,
|
503 |
+
"learning_rate": 2.690120824449183e-06,
|
504 |
+
"loss": 0.2216,
|
505 |
+
"step": 1300
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 1.39,
|
509 |
+
"eval_accuracy": 0.8563,
|
510 |
+
"eval_f1_macro": 0.7753520513346309,
|
511 |
+
"eval_f1_micro": 0.8563,
|
512 |
+
"eval_loss": 0.5687375068664551,
|
513 |
+
"eval_runtime": 25.9424,
|
514 |
+
"eval_samples_per_second": 385.47,
|
515 |
+
"eval_steps_per_second": 6.052,
|
516 |
+
"step": 1300
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 1.41,
|
520 |
+
"grad_norm": 27.56183433532715,
|
521 |
+
"learning_rate": 2.6457000710732055e-06,
|
522 |
+
"loss": 0.2845,
|
523 |
+
"step": 1325
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 1.44,
|
527 |
+
"grad_norm": 18.88576316833496,
|
528 |
+
"learning_rate": 2.601279317697228e-06,
|
529 |
+
"loss": 0.2685,
|
530 |
+
"step": 1350
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 1.47,
|
534 |
+
"grad_norm": 19.662220001220703,
|
535 |
+
"learning_rate": 2.5568585643212513e-06,
|
536 |
+
"loss": 0.2489,
|
537 |
+
"step": 1375
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 1.49,
|
541 |
+
"grad_norm": 22.736656188964844,
|
542 |
+
"learning_rate": 2.512437810945274e-06,
|
543 |
+
"loss": 0.2044,
|
544 |
+
"step": 1400
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 1.49,
|
548 |
+
"eval_accuracy": 0.861,
|
549 |
+
"eval_f1_macro": 0.7820141563614671,
|
550 |
+
"eval_f1_micro": 0.861,
|
551 |
+
"eval_loss": 0.5385035276412964,
|
552 |
+
"eval_runtime": 25.6666,
|
553 |
+
"eval_samples_per_second": 389.612,
|
554 |
+
"eval_steps_per_second": 6.117,
|
555 |
+
"step": 1400
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.52,
|
559 |
+
"grad_norm": 24.569435119628906,
|
560 |
+
"learning_rate": 2.4680170575692966e-06,
|
561 |
+
"loss": 0.2388,
|
562 |
+
"step": 1425
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.55,
|
566 |
+
"grad_norm": 17.50179100036621,
|
567 |
+
"learning_rate": 2.4235963041933193e-06,
|
568 |
+
"loss": 0.2556,
|
569 |
+
"step": 1450
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.57,
|
573 |
+
"grad_norm": 15.387917518615723,
|
574 |
+
"learning_rate": 2.379175550817342e-06,
|
575 |
+
"loss": 0.2343,
|
576 |
+
"step": 1475
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.6,
|
580 |
+
"grad_norm": 29.757495880126953,
|
581 |
+
"learning_rate": 2.3347547974413646e-06,
|
582 |
+
"loss": 0.2508,
|
583 |
+
"step": 1500
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.6,
|
587 |
+
"eval_accuracy": 0.8577,
|
588 |
+
"eval_f1_macro": 0.7710712973870113,
|
589 |
+
"eval_f1_micro": 0.8577,
|
590 |
+
"eval_loss": 0.5657808780670166,
|
591 |
+
"eval_runtime": 25.9754,
|
592 |
+
"eval_samples_per_second": 384.98,
|
593 |
+
"eval_steps_per_second": 6.044,
|
594 |
+
"step": 1500
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 1.63,
|
598 |
+
"grad_norm": 24.104217529296875,
|
599 |
+
"learning_rate": 2.2903340440653877e-06,
|
600 |
+
"loss": 0.2647,
|
601 |
+
"step": 1525
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 1.65,
|
605 |
+
"grad_norm": 29.48048973083496,
|
606 |
+
"learning_rate": 2.24591329068941e-06,
|
607 |
+
"loss": 0.212,
|
608 |
+
"step": 1550
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 1.68,
|
612 |
+
"grad_norm": 11.834880828857422,
|
613 |
+
"learning_rate": 2.201492537313433e-06,
|
614 |
+
"loss": 0.1939,
|
615 |
+
"step": 1575
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 1.71,
|
619 |
+
"grad_norm": 24.24506378173828,
|
620 |
+
"learning_rate": 2.1570717839374557e-06,
|
621 |
+
"loss": 0.2513,
|
622 |
+
"step": 1600
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 1.71,
|
626 |
+
"eval_accuracy": 0.8589,
|
627 |
+
"eval_f1_macro": 0.7871987440671023,
|
628 |
+
"eval_f1_micro": 0.8589,
|
629 |
+
"eval_loss": 0.5366827845573425,
|
630 |
+
"eval_runtime": 25.9643,
|
631 |
+
"eval_samples_per_second": 385.144,
|
632 |
+
"eval_steps_per_second": 6.047,
|
633 |
+
"step": 1600
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 1.73,
|
637 |
+
"grad_norm": 23.33180046081543,
|
638 |
+
"learning_rate": 2.112651030561479e-06,
|
639 |
+
"loss": 0.2409,
|
640 |
+
"step": 1625
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 1.76,
|
644 |
+
"grad_norm": 18.71114730834961,
|
645 |
+
"learning_rate": 2.068230277185501e-06,
|
646 |
+
"loss": 0.224,
|
647 |
+
"step": 1650
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 1.79,
|
651 |
+
"grad_norm": 21.95819854736328,
|
652 |
+
"learning_rate": 2.023809523809524e-06,
|
653 |
+
"loss": 0.2223,
|
654 |
+
"step": 1675
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 1.81,
|
658 |
+
"grad_norm": 27.065677642822266,
|
659 |
+
"learning_rate": 1.979388770433547e-06,
|
660 |
+
"loss": 0.2787,
|
661 |
+
"step": 1700
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 1.81,
|
665 |
+
"eval_accuracy": 0.8653,
|
666 |
+
"eval_f1_macro": 0.790261134849528,
|
667 |
+
"eval_f1_micro": 0.8653,
|
668 |
+
"eval_loss": 0.5133171677589417,
|
669 |
+
"eval_runtime": 25.5701,
|
670 |
+
"eval_samples_per_second": 391.081,
|
671 |
+
"eval_steps_per_second": 6.14,
|
672 |
+
"step": 1700
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 1.84,
|
676 |
+
"grad_norm": 35.288761138916016,
|
677 |
+
"learning_rate": 1.9349680170575695e-06,
|
678 |
+
"loss": 0.2709,
|
679 |
+
"step": 1725
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 1.87,
|
683 |
+
"grad_norm": 21.077306747436523,
|
684 |
+
"learning_rate": 1.8905472636815921e-06,
|
685 |
+
"loss": 0.2002,
|
686 |
+
"step": 1750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 1.89,
|
690 |
+
"grad_norm": 25.394838333129883,
|
691 |
+
"learning_rate": 1.846126510305615e-06,
|
692 |
+
"loss": 0.2461,
|
693 |
+
"step": 1775
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.92,
|
697 |
+
"grad_norm": 26.597759246826172,
|
698 |
+
"learning_rate": 1.8017057569296375e-06,
|
699 |
+
"loss": 0.2357,
|
700 |
+
"step": 1800
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 1.92,
|
704 |
+
"eval_accuracy": 0.8669,
|
705 |
+
"eval_f1_macro": 0.7902403947168268,
|
706 |
+
"eval_f1_micro": 0.8669,
|
707 |
+
"eval_loss": 0.5063937306404114,
|
708 |
+
"eval_runtime": 25.6031,
|
709 |
+
"eval_samples_per_second": 390.577,
|
710 |
+
"eval_steps_per_second": 6.132,
|
711 |
+
"step": 1800
|
712 |
+
}
|
713 |
+
],
|
714 |
+
"logging_steps": 25,
|
715 |
+
"max_steps": 2814,
|
716 |
+
"num_input_tokens_seen": 0,
|
717 |
+
"num_train_epochs": 3,
|
718 |
+
"save_steps": 100,
|
719 |
+
"total_flos": 1.074692042564567e+17,
|
720 |
+
"train_batch_size": 32,
|
721 |
+
"trial_name": null,
|
722 |
+
"trial_params": null
|
723 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f26a8af75d31668209ed94c987a4170cdf12fb1b08369f54b4ac17f6f18edc56
|
3 |
+
size 5944
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
Qwen/Qwen1.5_1.8B_ledgar/config.json
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen1.5-1.8B",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"finetuning_task": "text-classification",
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2048,
|
12 |
+
"id2label": {
|
13 |
+
"0": "0",
|
14 |
+
"1": "1",
|
15 |
+
"2": "10",
|
16 |
+
"3": "11",
|
17 |
+
"4": "12",
|
18 |
+
"5": "13",
|
19 |
+
"6": "14",
|
20 |
+
"7": "15",
|
21 |
+
"8": "16",
|
22 |
+
"9": "17",
|
23 |
+
"10": "18",
|
24 |
+
"11": "19",
|
25 |
+
"12": "2",
|
26 |
+
"13": "20",
|
27 |
+
"14": "21",
|
28 |
+
"15": "22",
|
29 |
+
"16": "23",
|
30 |
+
"17": "24",
|
31 |
+
"18": "25",
|
32 |
+
"19": "26",
|
33 |
+
"20": "27",
|
34 |
+
"21": "28",
|
35 |
+
"22": "29",
|
36 |
+
"23": "3",
|
37 |
+
"24": "30",
|
38 |
+
"25": "31",
|
39 |
+
"26": "32",
|
40 |
+
"27": "33",
|
41 |
+
"28": "34",
|
42 |
+
"29": "35",
|
43 |
+
"30": "36",
|
44 |
+
"31": "37",
|
45 |
+
"32": "38",
|
46 |
+
"33": "39",
|
47 |
+
"34": "4",
|
48 |
+
"35": "40",
|
49 |
+
"36": "41",
|
50 |
+
"37": "42",
|
51 |
+
"38": "43",
|
52 |
+
"39": "44",
|
53 |
+
"40": "45",
|
54 |
+
"41": "46",
|
55 |
+
"42": "47",
|
56 |
+
"43": "48",
|
57 |
+
"44": "49",
|
58 |
+
"45": "5",
|
59 |
+
"46": "50",
|
60 |
+
"47": "51",
|
61 |
+
"48": "52",
|
62 |
+
"49": "53",
|
63 |
+
"50": "54",
|
64 |
+
"51": "55",
|
65 |
+
"52": "56",
|
66 |
+
"53": "57",
|
67 |
+
"54": "58",
|
68 |
+
"55": "59",
|
69 |
+
"56": "6",
|
70 |
+
"57": "60",
|
71 |
+
"58": "61",
|
72 |
+
"59": "62",
|
73 |
+
"60": "63",
|
74 |
+
"61": "64",
|
75 |
+
"62": "65",
|
76 |
+
"63": "66",
|
77 |
+
"64": "67",
|
78 |
+
"65": "68",
|
79 |
+
"66": "69",
|
80 |
+
"67": "7",
|
81 |
+
"68": "70",
|
82 |
+
"69": "71",
|
83 |
+
"70": "72",
|
84 |
+
"71": "73",
|
85 |
+
"72": "74",
|
86 |
+
"73": "75",
|
87 |
+
"74": "76",
|
88 |
+
"75": "77",
|
89 |
+
"76": "78",
|
90 |
+
"77": "79",
|
91 |
+
"78": "8",
|
92 |
+
"79": "80",
|
93 |
+
"80": "81",
|
94 |
+
"81": "82",
|
95 |
+
"82": "83",
|
96 |
+
"83": "84",
|
97 |
+
"84": "85",
|
98 |
+
"85": "86",
|
99 |
+
"86": "87",
|
100 |
+
"87": "88",
|
101 |
+
"88": "89",
|
102 |
+
"89": "9",
|
103 |
+
"90": "90",
|
104 |
+
"91": "91",
|
105 |
+
"92": "92",
|
106 |
+
"93": "93",
|
107 |
+
"94": "94",
|
108 |
+
"95": "95",
|
109 |
+
"96": "96",
|
110 |
+
"97": "97",
|
111 |
+
"98": "98",
|
112 |
+
"99": "99"
|
113 |
+
},
|
114 |
+
"initializer_range": 0.02,
|
115 |
+
"intermediate_size": 5504,
|
116 |
+
"label2id": {
|
117 |
+
"0": 0,
|
118 |
+
"1": 1,
|
119 |
+
"10": 2,
|
120 |
+
"11": 3,
|
121 |
+
"12": 4,
|
122 |
+
"13": 5,
|
123 |
+
"14": 6,
|
124 |
+
"15": 7,
|
125 |
+
"16": 8,
|
126 |
+
"17": 9,
|
127 |
+
"18": 10,
|
128 |
+
"19": 11,
|
129 |
+
"2": 12,
|
130 |
+
"20": 13,
|
131 |
+
"21": 14,
|
132 |
+
"22": 15,
|
133 |
+
"23": 16,
|
134 |
+
"24": 17,
|
135 |
+
"25": 18,
|
136 |
+
"26": 19,
|
137 |
+
"27": 20,
|
138 |
+
"28": 21,
|
139 |
+
"29": 22,
|
140 |
+
"3": 23,
|
141 |
+
"30": 24,
|
142 |
+
"31": 25,
|
143 |
+
"32": 26,
|
144 |
+
"33": 27,
|
145 |
+
"34": 28,
|
146 |
+
"35": 29,
|
147 |
+
"36": 30,
|
148 |
+
"37": 31,
|
149 |
+
"38": 32,
|
150 |
+
"39": 33,
|
151 |
+
"4": 34,
|
152 |
+
"40": 35,
|
153 |
+
"41": 36,
|
154 |
+
"42": 37,
|
155 |
+
"43": 38,
|
156 |
+
"44": 39,
|
157 |
+
"45": 40,
|
158 |
+
"46": 41,
|
159 |
+
"47": 42,
|
160 |
+
"48": 43,
|
161 |
+
"49": 44,
|
162 |
+
"5": 45,
|
163 |
+
"50": 46,
|
164 |
+
"51": 47,
|
165 |
+
"52": 48,
|
166 |
+
"53": 49,
|
167 |
+
"54": 50,
|
168 |
+
"55": 51,
|
169 |
+
"56": 52,
|
170 |
+
"57": 53,
|
171 |
+
"58": 54,
|
172 |
+
"59": 55,
|
173 |
+
"6": 56,
|
174 |
+
"60": 57,
|
175 |
+
"61": 58,
|
176 |
+
"62": 59,
|
177 |
+
"63": 60,
|
178 |
+
"64": 61,
|
179 |
+
"65": 62,
|
180 |
+
"66": 63,
|
181 |
+
"67": 64,
|
182 |
+
"68": 65,
|
183 |
+
"69": 66,
|
184 |
+
"7": 67,
|
185 |
+
"70": 68,
|
186 |
+
"71": 69,
|
187 |
+
"72": 70,
|
188 |
+
"73": 71,
|
189 |
+
"74": 72,
|
190 |
+
"75": 73,
|
191 |
+
"76": 74,
|
192 |
+
"77": 75,
|
193 |
+
"78": 76,
|
194 |
+
"79": 77,
|
195 |
+
"8": 78,
|
196 |
+
"80": 79,
|
197 |
+
"81": 80,
|
198 |
+
"82": 81,
|
199 |
+
"83": 82,
|
200 |
+
"84": 83,
|
201 |
+
"85": 84,
|
202 |
+
"86": 85,
|
203 |
+
"87": 86,
|
204 |
+
"88": 87,
|
205 |
+
"89": 88,
|
206 |
+
"9": 89,
|
207 |
+
"90": 90,
|
208 |
+
"91": 91,
|
209 |
+
"92": 92,
|
210 |
+
"93": 93,
|
211 |
+
"94": 94,
|
212 |
+
"95": 95,
|
213 |
+
"96": 96,
|
214 |
+
"97": 97,
|
215 |
+
"98": 98,
|
216 |
+
"99": 99
|
217 |
+
},
|
218 |
+
"max_position_embeddings": 32768,
|
219 |
+
"max_window_layers": 21,
|
220 |
+
"model_type": "qwen2",
|
221 |
+
"num_attention_heads": 16,
|
222 |
+
"num_hidden_layers": 24,
|
223 |
+
"num_key_value_heads": 16,
|
224 |
+
"pad_token_id": 151643,
|
225 |
+
"problem_type": "single_label_classification",
|
226 |
+
"rms_norm_eps": 1e-06,
|
227 |
+
"rope_theta": 1000000.0,
|
228 |
+
"sliding_window": 32768,
|
229 |
+
"tie_word_embeddings": false,
|
230 |
+
"torch_dtype": "bfloat16",
|
231 |
+
"transformers_version": "4.39.0.dev0",
|
232 |
+
"use_cache": true,
|
233 |
+
"use_sliding_window": false,
|
234 |
+
"vocab_size": 151646
|
235 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/eval_results.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_accuracy": 0.8669,
|
4 |
+
"eval_f1_macro": 0.7902403947168268,
|
5 |
+
"eval_f1_micro": 0.8669,
|
6 |
+
"eval_loss": 0.5063937306404114,
|
7 |
+
"eval_runtime": 24.4305,
|
8 |
+
"eval_samples": 10000,
|
9 |
+
"eval_samples_per_second": 409.324,
|
10 |
+
"eval_steps_per_second": 6.426
|
11 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_ledgar/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6be1da9a3d742bcd4f56af0dd627ec82b2b529a0f3a3259561a3da60f4f2dffc
|
3 |
+
size 3050582504
|
Qwen/Qwen1.5_1.8B_ledgar/run.log
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
03/16/2024 00:29:25 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: False
|
2 |
+
03/16/2024 00:29:26 - WARNING - __main__ - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, 16-bits training: False
|
3 |
+
03/16/2024 00:29:35 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
|
4 |
+
03/16/2024 00:29:36 - WARNING - __main__ - The label2id key in the model config.json is not equal to the label2id key of this run. You can ignore this if you are doing finetuning.
|
Qwen/Qwen1.5_1.8B_ledgar/special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": "<|endoftext|>"
|
14 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/test_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"test_accuracy": 0.8664,
|
4 |
+
"test_f1_macro": 0.7974226514742132,
|
5 |
+
"test_f1_micro": 0.8664,
|
6 |
+
"test_loss": 0.532435953617096,
|
7 |
+
"test_runtime": 25.4113,
|
8 |
+
"test_samples_per_second": 393.525,
|
9 |
+
"test_steps_per_second": 6.178
|
10 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Qwen/Qwen1.5_1.8B_ledgar/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|endoftext|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 32768,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.42635450247932005,
|
4 |
+
"train_runtime": 3623.2348,
|
5 |
+
"train_samples": 60000,
|
6 |
+
"train_samples_per_second": 49.679,
|
7 |
+
"train_steps_per_second": 0.777
|
8 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/trainer_state.json
ADDED
@@ -0,0 +1,1122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.5063937306404114,
|
3 |
+
"best_model_checkpoint": "../../experiments_checkpoints/MAdAiLab/Qwen/Qwen1.5_1.8B_ledgar/checkpoint-1800",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 2814,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"grad_norm": 80.4836196899414,
|
14 |
+
"learning_rate": 4.9555792466240235e-06,
|
15 |
+
"loss": 7.9887,
|
16 |
+
"step": 25
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05,
|
20 |
+
"grad_norm": 60.927364349365234,
|
21 |
+
"learning_rate": 4.911158493248046e-06,
|
22 |
+
"loss": 3.1908,
|
23 |
+
"step": 50
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.08,
|
27 |
+
"grad_norm": 49.68091583251953,
|
28 |
+
"learning_rate": 4.866737739872069e-06,
|
29 |
+
"loss": 1.7183,
|
30 |
+
"step": 75
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.11,
|
34 |
+
"grad_norm": 55.176666259765625,
|
35 |
+
"learning_rate": 4.822316986496091e-06,
|
36 |
+
"loss": 1.3077,
|
37 |
+
"step": 100
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.11,
|
41 |
+
"eval_accuracy": 0.7277,
|
42 |
+
"eval_f1_macro": 0.5770831474844406,
|
43 |
+
"eval_f1_micro": 0.7277,
|
44 |
+
"eval_loss": 1.0944937467575073,
|
45 |
+
"eval_runtime": 25.447,
|
46 |
+
"eval_samples_per_second": 392.973,
|
47 |
+
"eval_steps_per_second": 6.17,
|
48 |
+
"step": 100
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 0.13,
|
52 |
+
"grad_norm": 46.64506530761719,
|
53 |
+
"learning_rate": 4.777896233120114e-06,
|
54 |
+
"loss": 1.1393,
|
55 |
+
"step": 125
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 0.16,
|
59 |
+
"grad_norm": 41.11891174316406,
|
60 |
+
"learning_rate": 4.733475479744136e-06,
|
61 |
+
"loss": 1.0243,
|
62 |
+
"step": 150
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.19,
|
66 |
+
"grad_norm": 34.20009994506836,
|
67 |
+
"learning_rate": 4.6890547263681595e-06,
|
68 |
+
"loss": 0.9005,
|
69 |
+
"step": 175
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.21,
|
73 |
+
"grad_norm": 38.80377197265625,
|
74 |
+
"learning_rate": 4.644633972992183e-06,
|
75 |
+
"loss": 0.8627,
|
76 |
+
"step": 200
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.21,
|
80 |
+
"eval_accuracy": 0.7907,
|
81 |
+
"eval_f1_macro": 0.6657039157603262,
|
82 |
+
"eval_f1_micro": 0.7907,
|
83 |
+
"eval_loss": 0.8368468880653381,
|
84 |
+
"eval_runtime": 25.9484,
|
85 |
+
"eval_samples_per_second": 385.38,
|
86 |
+
"eval_steps_per_second": 6.05,
|
87 |
+
"step": 200
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.24,
|
91 |
+
"grad_norm": 34.973506927490234,
|
92 |
+
"learning_rate": 4.600213219616206e-06,
|
93 |
+
"loss": 0.7896,
|
94 |
+
"step": 225
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.27,
|
98 |
+
"grad_norm": 29.98388671875,
|
99 |
+
"learning_rate": 4.555792466240228e-06,
|
100 |
+
"loss": 0.8307,
|
101 |
+
"step": 250
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.29,
|
105 |
+
"grad_norm": 27.09973907470703,
|
106 |
+
"learning_rate": 4.51137171286425e-06,
|
107 |
+
"loss": 0.7846,
|
108 |
+
"step": 275
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.32,
|
112 |
+
"grad_norm": 36.151161193847656,
|
113 |
+
"learning_rate": 4.466950959488273e-06,
|
114 |
+
"loss": 0.7179,
|
115 |
+
"step": 300
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.32,
|
119 |
+
"eval_accuracy": 0.7971,
|
120 |
+
"eval_f1_macro": 0.6861778340669753,
|
121 |
+
"eval_f1_micro": 0.7971,
|
122 |
+
"eval_loss": 0.7824062705039978,
|
123 |
+
"eval_runtime": 25.9003,
|
124 |
+
"eval_samples_per_second": 386.095,
|
125 |
+
"eval_steps_per_second": 6.062,
|
126 |
+
"step": 300
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"epoch": 0.35,
|
130 |
+
"grad_norm": 33.09822463989258,
|
131 |
+
"learning_rate": 4.422530206112296e-06,
|
132 |
+
"loss": 0.7133,
|
133 |
+
"step": 325
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"epoch": 0.37,
|
137 |
+
"grad_norm": 35.52923583984375,
|
138 |
+
"learning_rate": 4.378109452736319e-06,
|
139 |
+
"loss": 0.7354,
|
140 |
+
"step": 350
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.4,
|
144 |
+
"grad_norm": 39.79545211791992,
|
145 |
+
"learning_rate": 4.333688699360342e-06,
|
146 |
+
"loss": 0.6619,
|
147 |
+
"step": 375
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.43,
|
151 |
+
"grad_norm": 30.13161849975586,
|
152 |
+
"learning_rate": 4.289267945984365e-06,
|
153 |
+
"loss": 0.6961,
|
154 |
+
"step": 400
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.43,
|
158 |
+
"eval_accuracy": 0.8138,
|
159 |
+
"eval_f1_macro": 0.6992465625213966,
|
160 |
+
"eval_f1_micro": 0.8138,
|
161 |
+
"eval_loss": 0.6951531171798706,
|
162 |
+
"eval_runtime": 25.6082,
|
163 |
+
"eval_samples_per_second": 390.5,
|
164 |
+
"eval_steps_per_second": 6.131,
|
165 |
+
"step": 400
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.45,
|
169 |
+
"grad_norm": 27.575519561767578,
|
170 |
+
"learning_rate": 4.244847192608387e-06,
|
171 |
+
"loss": 0.7162,
|
172 |
+
"step": 425
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.48,
|
176 |
+
"grad_norm": 35.084754943847656,
|
177 |
+
"learning_rate": 4.200426439232409e-06,
|
178 |
+
"loss": 0.7722,
|
179 |
+
"step": 450
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.51,
|
183 |
+
"grad_norm": 28.47511863708496,
|
184 |
+
"learning_rate": 4.156005685856432e-06,
|
185 |
+
"loss": 0.6866,
|
186 |
+
"step": 475
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.53,
|
190 |
+
"grad_norm": 32.34709548950195,
|
191 |
+
"learning_rate": 4.1115849324804554e-06,
|
192 |
+
"loss": 0.745,
|
193 |
+
"step": 500
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.53,
|
197 |
+
"eval_accuracy": 0.8121,
|
198 |
+
"eval_f1_macro": 0.7033560293953169,
|
199 |
+
"eval_f1_micro": 0.8121,
|
200 |
+
"eval_loss": 0.6718780994415283,
|
201 |
+
"eval_runtime": 25.9161,
|
202 |
+
"eval_samples_per_second": 385.86,
|
203 |
+
"eval_steps_per_second": 6.058,
|
204 |
+
"step": 500
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.56,
|
208 |
+
"grad_norm": 25.5845890045166,
|
209 |
+
"learning_rate": 4.067164179104478e-06,
|
210 |
+
"loss": 0.6535,
|
211 |
+
"step": 525
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.59,
|
215 |
+
"grad_norm": 22.466503143310547,
|
216 |
+
"learning_rate": 4.022743425728501e-06,
|
217 |
+
"loss": 0.5969,
|
218 |
+
"step": 550
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.61,
|
222 |
+
"grad_norm": 27.53134536743164,
|
223 |
+
"learning_rate": 3.978322672352524e-06,
|
224 |
+
"loss": 0.5926,
|
225 |
+
"step": 575
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.64,
|
229 |
+
"grad_norm": 31.356454849243164,
|
230 |
+
"learning_rate": 3.933901918976546e-06,
|
231 |
+
"loss": 0.6505,
|
232 |
+
"step": 600
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 0.64,
|
236 |
+
"eval_accuracy": 0.834,
|
237 |
+
"eval_f1_macro": 0.7469091035082649,
|
238 |
+
"eval_f1_micro": 0.834,
|
239 |
+
"eval_loss": 0.6219750046730042,
|
240 |
+
"eval_runtime": 25.9316,
|
241 |
+
"eval_samples_per_second": 385.63,
|
242 |
+
"eval_steps_per_second": 6.054,
|
243 |
+
"step": 600
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.67,
|
247 |
+
"grad_norm": 37.17654800415039,
|
248 |
+
"learning_rate": 3.889481165600569e-06,
|
249 |
+
"loss": 0.6171,
|
250 |
+
"step": 625
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.69,
|
254 |
+
"grad_norm": 26.71038055419922,
|
255 |
+
"learning_rate": 3.8450604122245914e-06,
|
256 |
+
"loss": 0.6218,
|
257 |
+
"step": 650
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.72,
|
261 |
+
"grad_norm": 27.787952423095703,
|
262 |
+
"learning_rate": 3.8006396588486145e-06,
|
263 |
+
"loss": 0.6124,
|
264 |
+
"step": 675
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.75,
|
268 |
+
"grad_norm": 30.405912399291992,
|
269 |
+
"learning_rate": 3.756218905472637e-06,
|
270 |
+
"loss": 0.5914,
|
271 |
+
"step": 700
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.75,
|
275 |
+
"eval_accuracy": 0.8362,
|
276 |
+
"eval_f1_macro": 0.7410957777496914,
|
277 |
+
"eval_f1_micro": 0.8362,
|
278 |
+
"eval_loss": 0.6109625101089478,
|
279 |
+
"eval_runtime": 25.6247,
|
280 |
+
"eval_samples_per_second": 390.248,
|
281 |
+
"eval_steps_per_second": 6.127,
|
282 |
+
"step": 700
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.77,
|
286 |
+
"grad_norm": 30.52012062072754,
|
287 |
+
"learning_rate": 3.71179815209666e-06,
|
288 |
+
"loss": 0.5711,
|
289 |
+
"step": 725
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.8,
|
293 |
+
"grad_norm": 30.88004493713379,
|
294 |
+
"learning_rate": 3.667377398720683e-06,
|
295 |
+
"loss": 0.6695,
|
296 |
+
"step": 750
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.83,
|
300 |
+
"grad_norm": 22.504459381103516,
|
301 |
+
"learning_rate": 3.622956645344705e-06,
|
302 |
+
"loss": 0.5731,
|
303 |
+
"step": 775
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.85,
|
307 |
+
"grad_norm": 21.515512466430664,
|
308 |
+
"learning_rate": 3.578535891968728e-06,
|
309 |
+
"loss": 0.5837,
|
310 |
+
"step": 800
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.85,
|
314 |
+
"eval_accuracy": 0.8385,
|
315 |
+
"eval_f1_macro": 0.7413235492734335,
|
316 |
+
"eval_f1_micro": 0.8385,
|
317 |
+
"eval_loss": 0.5766780972480774,
|
318 |
+
"eval_runtime": 25.6608,
|
319 |
+
"eval_samples_per_second": 389.7,
|
320 |
+
"eval_steps_per_second": 6.118,
|
321 |
+
"step": 800
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.88,
|
325 |
+
"grad_norm": 30.9660587310791,
|
326 |
+
"learning_rate": 3.534115138592751e-06,
|
327 |
+
"loss": 0.6085,
|
328 |
+
"step": 825
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.91,
|
332 |
+
"grad_norm": 18.883647918701172,
|
333 |
+
"learning_rate": 3.4896943852167736e-06,
|
334 |
+
"loss": 0.5121,
|
335 |
+
"step": 850
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.93,
|
339 |
+
"grad_norm": 24.548561096191406,
|
340 |
+
"learning_rate": 3.4452736318407963e-06,
|
341 |
+
"loss": 0.5621,
|
342 |
+
"step": 875
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.96,
|
346 |
+
"grad_norm": 29.833791732788086,
|
347 |
+
"learning_rate": 3.4008528784648194e-06,
|
348 |
+
"loss": 0.5218,
|
349 |
+
"step": 900
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.96,
|
353 |
+
"eval_accuracy": 0.849,
|
354 |
+
"eval_f1_macro": 0.7702797685808792,
|
355 |
+
"eval_f1_micro": 0.849,
|
356 |
+
"eval_loss": 0.5365203022956848,
|
357 |
+
"eval_runtime": 25.9091,
|
358 |
+
"eval_samples_per_second": 385.964,
|
359 |
+
"eval_steps_per_second": 6.06,
|
360 |
+
"step": 900
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.99,
|
364 |
+
"grad_norm": 27.948928833007812,
|
365 |
+
"learning_rate": 3.3564321250888416e-06,
|
366 |
+
"loss": 0.5681,
|
367 |
+
"step": 925
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 1.01,
|
371 |
+
"grad_norm": 19.800880432128906,
|
372 |
+
"learning_rate": 3.3120113717128643e-06,
|
373 |
+
"loss": 0.4014,
|
374 |
+
"step": 950
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.04,
|
378 |
+
"grad_norm": 19.333465576171875,
|
379 |
+
"learning_rate": 3.2675906183368874e-06,
|
380 |
+
"loss": 0.2795,
|
381 |
+
"step": 975
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.07,
|
385 |
+
"grad_norm": 22.315195083618164,
|
386 |
+
"learning_rate": 3.22316986496091e-06,
|
387 |
+
"loss": 0.2632,
|
388 |
+
"step": 1000
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 1.07,
|
392 |
+
"eval_accuracy": 0.8562,
|
393 |
+
"eval_f1_macro": 0.7683569808757446,
|
394 |
+
"eval_f1_micro": 0.8562,
|
395 |
+
"eval_loss": 0.5503664016723633,
|
396 |
+
"eval_runtime": 25.5198,
|
397 |
+
"eval_samples_per_second": 391.852,
|
398 |
+
"eval_steps_per_second": 6.152,
|
399 |
+
"step": 1000
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 1.09,
|
403 |
+
"grad_norm": 24.819501876831055,
|
404 |
+
"learning_rate": 3.1787491115849327e-06,
|
405 |
+
"loss": 0.2532,
|
406 |
+
"step": 1025
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 1.12,
|
410 |
+
"grad_norm": 21.534936904907227,
|
411 |
+
"learning_rate": 3.1343283582089558e-06,
|
412 |
+
"loss": 0.2311,
|
413 |
+
"step": 1050
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 1.15,
|
417 |
+
"grad_norm": 24.088809967041016,
|
418 |
+
"learning_rate": 3.0899076048329785e-06,
|
419 |
+
"loss": 0.3134,
|
420 |
+
"step": 1075
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 1.17,
|
424 |
+
"grad_norm": 27.605493545532227,
|
425 |
+
"learning_rate": 3.0454868514570007e-06,
|
426 |
+
"loss": 0.2607,
|
427 |
+
"step": 1100
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 1.17,
|
431 |
+
"eval_accuracy": 0.8525,
|
432 |
+
"eval_f1_macro": 0.7656891626030512,
|
433 |
+
"eval_f1_micro": 0.8525,
|
434 |
+
"eval_loss": 0.5496523380279541,
|
435 |
+
"eval_runtime": 25.7081,
|
436 |
+
"eval_samples_per_second": 388.982,
|
437 |
+
"eval_steps_per_second": 6.107,
|
438 |
+
"step": 1100
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 1.2,
|
442 |
+
"grad_norm": 22.955158233642578,
|
443 |
+
"learning_rate": 3.0010660980810234e-06,
|
444 |
+
"loss": 0.2674,
|
445 |
+
"step": 1125
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 1.23,
|
449 |
+
"grad_norm": 19.089893341064453,
|
450 |
+
"learning_rate": 2.9566453447050464e-06,
|
451 |
+
"loss": 0.2074,
|
452 |
+
"step": 1150
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.25,
|
456 |
+
"grad_norm": 19.285688400268555,
|
457 |
+
"learning_rate": 2.912224591329069e-06,
|
458 |
+
"loss": 0.2488,
|
459 |
+
"step": 1175
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.28,
|
463 |
+
"grad_norm": 23.45233726501465,
|
464 |
+
"learning_rate": 2.867803837953092e-06,
|
465 |
+
"loss": 0.274,
|
466 |
+
"step": 1200
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 1.28,
|
470 |
+
"eval_accuracy": 0.8584,
|
471 |
+
"eval_f1_macro": 0.7746299057445165,
|
472 |
+
"eval_f1_micro": 0.8584,
|
473 |
+
"eval_loss": 0.5439000129699707,
|
474 |
+
"eval_runtime": 25.9014,
|
475 |
+
"eval_samples_per_second": 386.079,
|
476 |
+
"eval_steps_per_second": 6.061,
|
477 |
+
"step": 1200
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 1.31,
|
481 |
+
"grad_norm": 31.231454849243164,
|
482 |
+
"learning_rate": 2.823383084577115e-06,
|
483 |
+
"loss": 0.2624,
|
484 |
+
"step": 1225
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 1.33,
|
488 |
+
"grad_norm": 28.1010799407959,
|
489 |
+
"learning_rate": 2.7789623312011375e-06,
|
490 |
+
"loss": 0.2992,
|
491 |
+
"step": 1250
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 1.36,
|
495 |
+
"grad_norm": 30.002384185791016,
|
496 |
+
"learning_rate": 2.7345415778251598e-06,
|
497 |
+
"loss": 0.2589,
|
498 |
+
"step": 1275
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 1.39,
|
502 |
+
"grad_norm": 23.61323356628418,
|
503 |
+
"learning_rate": 2.690120824449183e-06,
|
504 |
+
"loss": 0.2216,
|
505 |
+
"step": 1300
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 1.39,
|
509 |
+
"eval_accuracy": 0.8563,
|
510 |
+
"eval_f1_macro": 0.7753520513346309,
|
511 |
+
"eval_f1_micro": 0.8563,
|
512 |
+
"eval_loss": 0.5687375068664551,
|
513 |
+
"eval_runtime": 25.9424,
|
514 |
+
"eval_samples_per_second": 385.47,
|
515 |
+
"eval_steps_per_second": 6.052,
|
516 |
+
"step": 1300
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 1.41,
|
520 |
+
"grad_norm": 27.56183433532715,
|
521 |
+
"learning_rate": 2.6457000710732055e-06,
|
522 |
+
"loss": 0.2845,
|
523 |
+
"step": 1325
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 1.44,
|
527 |
+
"grad_norm": 18.88576316833496,
|
528 |
+
"learning_rate": 2.601279317697228e-06,
|
529 |
+
"loss": 0.2685,
|
530 |
+
"step": 1350
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 1.47,
|
534 |
+
"grad_norm": 19.662220001220703,
|
535 |
+
"learning_rate": 2.5568585643212513e-06,
|
536 |
+
"loss": 0.2489,
|
537 |
+
"step": 1375
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 1.49,
|
541 |
+
"grad_norm": 22.736656188964844,
|
542 |
+
"learning_rate": 2.512437810945274e-06,
|
543 |
+
"loss": 0.2044,
|
544 |
+
"step": 1400
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 1.49,
|
548 |
+
"eval_accuracy": 0.861,
|
549 |
+
"eval_f1_macro": 0.7820141563614671,
|
550 |
+
"eval_f1_micro": 0.861,
|
551 |
+
"eval_loss": 0.5385035276412964,
|
552 |
+
"eval_runtime": 25.6666,
|
553 |
+
"eval_samples_per_second": 389.612,
|
554 |
+
"eval_steps_per_second": 6.117,
|
555 |
+
"step": 1400
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.52,
|
559 |
+
"grad_norm": 24.569435119628906,
|
560 |
+
"learning_rate": 2.4680170575692966e-06,
|
561 |
+
"loss": 0.2388,
|
562 |
+
"step": 1425
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.55,
|
566 |
+
"grad_norm": 17.50179100036621,
|
567 |
+
"learning_rate": 2.4235963041933193e-06,
|
568 |
+
"loss": 0.2556,
|
569 |
+
"step": 1450
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.57,
|
573 |
+
"grad_norm": 15.387917518615723,
|
574 |
+
"learning_rate": 2.379175550817342e-06,
|
575 |
+
"loss": 0.2343,
|
576 |
+
"step": 1475
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.6,
|
580 |
+
"grad_norm": 29.757495880126953,
|
581 |
+
"learning_rate": 2.3347547974413646e-06,
|
582 |
+
"loss": 0.2508,
|
583 |
+
"step": 1500
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.6,
|
587 |
+
"eval_accuracy": 0.8577,
|
588 |
+
"eval_f1_macro": 0.7710712973870113,
|
589 |
+
"eval_f1_micro": 0.8577,
|
590 |
+
"eval_loss": 0.5657808780670166,
|
591 |
+
"eval_runtime": 25.9754,
|
592 |
+
"eval_samples_per_second": 384.98,
|
593 |
+
"eval_steps_per_second": 6.044,
|
594 |
+
"step": 1500
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 1.63,
|
598 |
+
"grad_norm": 24.104217529296875,
|
599 |
+
"learning_rate": 2.2903340440653877e-06,
|
600 |
+
"loss": 0.2647,
|
601 |
+
"step": 1525
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 1.65,
|
605 |
+
"grad_norm": 29.48048973083496,
|
606 |
+
"learning_rate": 2.24591329068941e-06,
|
607 |
+
"loss": 0.212,
|
608 |
+
"step": 1550
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 1.68,
|
612 |
+
"grad_norm": 11.834880828857422,
|
613 |
+
"learning_rate": 2.201492537313433e-06,
|
614 |
+
"loss": 0.1939,
|
615 |
+
"step": 1575
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 1.71,
|
619 |
+
"grad_norm": 24.24506378173828,
|
620 |
+
"learning_rate": 2.1570717839374557e-06,
|
621 |
+
"loss": 0.2513,
|
622 |
+
"step": 1600
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 1.71,
|
626 |
+
"eval_accuracy": 0.8589,
|
627 |
+
"eval_f1_macro": 0.7871987440671023,
|
628 |
+
"eval_f1_micro": 0.8589,
|
629 |
+
"eval_loss": 0.5366827845573425,
|
630 |
+
"eval_runtime": 25.9643,
|
631 |
+
"eval_samples_per_second": 385.144,
|
632 |
+
"eval_steps_per_second": 6.047,
|
633 |
+
"step": 1600
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 1.73,
|
637 |
+
"grad_norm": 23.33180046081543,
|
638 |
+
"learning_rate": 2.112651030561479e-06,
|
639 |
+
"loss": 0.2409,
|
640 |
+
"step": 1625
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 1.76,
|
644 |
+
"grad_norm": 18.71114730834961,
|
645 |
+
"learning_rate": 2.068230277185501e-06,
|
646 |
+
"loss": 0.224,
|
647 |
+
"step": 1650
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 1.79,
|
651 |
+
"grad_norm": 21.95819854736328,
|
652 |
+
"learning_rate": 2.023809523809524e-06,
|
653 |
+
"loss": 0.2223,
|
654 |
+
"step": 1675
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 1.81,
|
658 |
+
"grad_norm": 27.065677642822266,
|
659 |
+
"learning_rate": 1.979388770433547e-06,
|
660 |
+
"loss": 0.2787,
|
661 |
+
"step": 1700
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 1.81,
|
665 |
+
"eval_accuracy": 0.8653,
|
666 |
+
"eval_f1_macro": 0.790261134849528,
|
667 |
+
"eval_f1_micro": 0.8653,
|
668 |
+
"eval_loss": 0.5133171677589417,
|
669 |
+
"eval_runtime": 25.5701,
|
670 |
+
"eval_samples_per_second": 391.081,
|
671 |
+
"eval_steps_per_second": 6.14,
|
672 |
+
"step": 1700
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 1.84,
|
676 |
+
"grad_norm": 35.288761138916016,
|
677 |
+
"learning_rate": 1.9349680170575695e-06,
|
678 |
+
"loss": 0.2709,
|
679 |
+
"step": 1725
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 1.87,
|
683 |
+
"grad_norm": 21.077306747436523,
|
684 |
+
"learning_rate": 1.8905472636815921e-06,
|
685 |
+
"loss": 0.2002,
|
686 |
+
"step": 1750
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 1.89,
|
690 |
+
"grad_norm": 25.394838333129883,
|
691 |
+
"learning_rate": 1.846126510305615e-06,
|
692 |
+
"loss": 0.2461,
|
693 |
+
"step": 1775
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.92,
|
697 |
+
"grad_norm": 26.597759246826172,
|
698 |
+
"learning_rate": 1.8017057569296375e-06,
|
699 |
+
"loss": 0.2357,
|
700 |
+
"step": 1800
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 1.92,
|
704 |
+
"eval_accuracy": 0.8669,
|
705 |
+
"eval_f1_macro": 0.7902403947168268,
|
706 |
+
"eval_f1_micro": 0.8669,
|
707 |
+
"eval_loss": 0.5063937306404114,
|
708 |
+
"eval_runtime": 25.6031,
|
709 |
+
"eval_samples_per_second": 390.577,
|
710 |
+
"eval_steps_per_second": 6.132,
|
711 |
+
"step": 1800
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 1.95,
|
715 |
+
"grad_norm": 18.62090301513672,
|
716 |
+
"learning_rate": 1.7572850035536603e-06,
|
717 |
+
"loss": 0.2612,
|
718 |
+
"step": 1825
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 1.97,
|
722 |
+
"grad_norm": 25.897939682006836,
|
723 |
+
"learning_rate": 1.7128642501776832e-06,
|
724 |
+
"loss": 0.2243,
|
725 |
+
"step": 1850
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 2.0,
|
729 |
+
"grad_norm": 20.556882858276367,
|
730 |
+
"learning_rate": 1.668443496801706e-06,
|
731 |
+
"loss": 0.2078,
|
732 |
+
"step": 1875
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 2.03,
|
736 |
+
"grad_norm": 5.211686134338379,
|
737 |
+
"learning_rate": 1.6240227434257286e-06,
|
738 |
+
"loss": 0.049,
|
739 |
+
"step": 1900
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 2.03,
|
743 |
+
"eval_accuracy": 0.8719,
|
744 |
+
"eval_f1_macro": 0.797777536741942,
|
745 |
+
"eval_f1_micro": 0.8719,
|
746 |
+
"eval_loss": 0.5344421863555908,
|
747 |
+
"eval_runtime": 25.9399,
|
748 |
+
"eval_samples_per_second": 385.506,
|
749 |
+
"eval_steps_per_second": 6.052,
|
750 |
+
"step": 1900
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"epoch": 2.05,
|
754 |
+
"grad_norm": 14.868837356567383,
|
755 |
+
"learning_rate": 1.5796019900497514e-06,
|
756 |
+
"loss": 0.0483,
|
757 |
+
"step": 1925
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 2.08,
|
761 |
+
"grad_norm": 3.739365577697754,
|
762 |
+
"learning_rate": 1.5351812366737743e-06,
|
763 |
+
"loss": 0.0426,
|
764 |
+
"step": 1950
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 2.11,
|
768 |
+
"grad_norm": 3.052903413772583,
|
769 |
+
"learning_rate": 1.4907604832977968e-06,
|
770 |
+
"loss": 0.0468,
|
771 |
+
"step": 1975
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 2.13,
|
775 |
+
"grad_norm": 11.233345985412598,
|
776 |
+
"learning_rate": 1.4463397299218196e-06,
|
777 |
+
"loss": 0.0298,
|
778 |
+
"step": 2000
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"epoch": 2.13,
|
782 |
+
"eval_accuracy": 0.8737,
|
783 |
+
"eval_f1_macro": 0.7992354841882687,
|
784 |
+
"eval_f1_micro": 0.8737,
|
785 |
+
"eval_loss": 0.5761749744415283,
|
786 |
+
"eval_runtime": 25.6811,
|
787 |
+
"eval_samples_per_second": 389.392,
|
788 |
+
"eval_steps_per_second": 6.113,
|
789 |
+
"step": 2000
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 2.16,
|
793 |
+
"grad_norm": 9.836750030517578,
|
794 |
+
"learning_rate": 1.4019189765458423e-06,
|
795 |
+
"loss": 0.0306,
|
796 |
+
"step": 2025
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 2.19,
|
800 |
+
"grad_norm": 12.054607391357422,
|
801 |
+
"learning_rate": 1.357498223169865e-06,
|
802 |
+
"loss": 0.0408,
|
803 |
+
"step": 2050
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 2.21,
|
807 |
+
"grad_norm": 2.877735137939453,
|
808 |
+
"learning_rate": 1.3130774697938879e-06,
|
809 |
+
"loss": 0.032,
|
810 |
+
"step": 2075
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 2.24,
|
814 |
+
"grad_norm": 18.573556900024414,
|
815 |
+
"learning_rate": 1.2686567164179105e-06,
|
816 |
+
"loss": 0.0427,
|
817 |
+
"step": 2100
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 2.24,
|
821 |
+
"eval_accuracy": 0.8708,
|
822 |
+
"eval_f1_macro": 0.7976411680340069,
|
823 |
+
"eval_f1_micro": 0.8708,
|
824 |
+
"eval_loss": 0.5961406230926514,
|
825 |
+
"eval_runtime": 25.6941,
|
826 |
+
"eval_samples_per_second": 389.194,
|
827 |
+
"eval_steps_per_second": 6.11,
|
828 |
+
"step": 2100
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 2.27,
|
832 |
+
"grad_norm": 11.545409202575684,
|
833 |
+
"learning_rate": 1.2242359630419332e-06,
|
834 |
+
"loss": 0.0343,
|
835 |
+
"step": 2125
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 2.29,
|
839 |
+
"grad_norm": 3.3840279579162598,
|
840 |
+
"learning_rate": 1.179815209665956e-06,
|
841 |
+
"loss": 0.0237,
|
842 |
+
"step": 2150
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.32,
|
846 |
+
"grad_norm": 7.452319145202637,
|
847 |
+
"learning_rate": 1.1353944562899787e-06,
|
848 |
+
"loss": 0.042,
|
849 |
+
"step": 2175
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 2.35,
|
853 |
+
"grad_norm": 7.546860694885254,
|
854 |
+
"learning_rate": 1.0909737029140014e-06,
|
855 |
+
"loss": 0.036,
|
856 |
+
"step": 2200
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 2.35,
|
860 |
+
"eval_accuracy": 0.8728,
|
861 |
+
"eval_f1_macro": 0.7987820731312831,
|
862 |
+
"eval_f1_micro": 0.8728,
|
863 |
+
"eval_loss": 0.6128308773040771,
|
864 |
+
"eval_runtime": 25.9603,
|
865 |
+
"eval_samples_per_second": 385.204,
|
866 |
+
"eval_steps_per_second": 6.048,
|
867 |
+
"step": 2200
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 2.37,
|
871 |
+
"grad_norm": 0.8773216605186462,
|
872 |
+
"learning_rate": 1.0465529495380243e-06,
|
873 |
+
"loss": 0.0264,
|
874 |
+
"step": 2225
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 2.4,
|
878 |
+
"grad_norm": 1.4390593767166138,
|
879 |
+
"learning_rate": 1.002132196162047e-06,
|
880 |
+
"loss": 0.0326,
|
881 |
+
"step": 2250
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 2.43,
|
885 |
+
"grad_norm": 3.424440622329712,
|
886 |
+
"learning_rate": 9.577114427860696e-07,
|
887 |
+
"loss": 0.0265,
|
888 |
+
"step": 2275
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 2.45,
|
892 |
+
"grad_norm": 13.154258728027344,
|
893 |
+
"learning_rate": 9.132906894100925e-07,
|
894 |
+
"loss": 0.0551,
|
895 |
+
"step": 2300
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 2.45,
|
899 |
+
"eval_accuracy": 0.8708,
|
900 |
+
"eval_f1_macro": 0.7975921884184456,
|
901 |
+
"eval_f1_micro": 0.8708,
|
902 |
+
"eval_loss": 0.6165248155593872,
|
903 |
+
"eval_runtime": 25.655,
|
904 |
+
"eval_samples_per_second": 389.788,
|
905 |
+
"eval_steps_per_second": 6.12,
|
906 |
+
"step": 2300
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 2.48,
|
910 |
+
"grad_norm": 8.90126895904541,
|
911 |
+
"learning_rate": 8.688699360341152e-07,
|
912 |
+
"loss": 0.0359,
|
913 |
+
"step": 2325
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 2.51,
|
917 |
+
"grad_norm": 10.456062316894531,
|
918 |
+
"learning_rate": 8.24449182658138e-07,
|
919 |
+
"loss": 0.0454,
|
920 |
+
"step": 2350
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 2.53,
|
924 |
+
"grad_norm": 13.38987922668457,
|
925 |
+
"learning_rate": 7.800284292821607e-07,
|
926 |
+
"loss": 0.0329,
|
927 |
+
"step": 2375
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 2.56,
|
931 |
+
"grad_norm": 6.421198844909668,
|
932 |
+
"learning_rate": 7.356076759061834e-07,
|
933 |
+
"loss": 0.0392,
|
934 |
+
"step": 2400
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 2.56,
|
938 |
+
"eval_accuracy": 0.8749,
|
939 |
+
"eval_f1_macro": 0.8038155628364919,
|
940 |
+
"eval_f1_micro": 0.8749,
|
941 |
+
"eval_loss": 0.6023103594779968,
|
942 |
+
"eval_runtime": 25.6716,
|
943 |
+
"eval_samples_per_second": 389.535,
|
944 |
+
"eval_steps_per_second": 6.116,
|
945 |
+
"step": 2400
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 2.59,
|
949 |
+
"grad_norm": 16.32231330871582,
|
950 |
+
"learning_rate": 6.911869225302062e-07,
|
951 |
+
"loss": 0.0319,
|
952 |
+
"step": 2425
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 2.61,
|
956 |
+
"grad_norm": 5.884388446807861,
|
957 |
+
"learning_rate": 6.467661691542289e-07,
|
958 |
+
"loss": 0.041,
|
959 |
+
"step": 2450
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 2.64,
|
963 |
+
"grad_norm": 17.850648880004883,
|
964 |
+
"learning_rate": 6.023454157782517e-07,
|
965 |
+
"loss": 0.036,
|
966 |
+
"step": 2475
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"epoch": 2.67,
|
970 |
+
"grad_norm": 16.628997802734375,
|
971 |
+
"learning_rate": 5.579246624022743e-07,
|
972 |
+
"loss": 0.0364,
|
973 |
+
"step": 2500
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 2.67,
|
977 |
+
"eval_accuracy": 0.8729,
|
978 |
+
"eval_f1_macro": 0.8001251167012569,
|
979 |
+
"eval_f1_micro": 0.8729,
|
980 |
+
"eval_loss": 0.6167578101158142,
|
981 |
+
"eval_runtime": 25.9524,
|
982 |
+
"eval_samples_per_second": 385.321,
|
983 |
+
"eval_steps_per_second": 6.05,
|
984 |
+
"step": 2500
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 2.69,
|
988 |
+
"grad_norm": 4.081849575042725,
|
989 |
+
"learning_rate": 5.135039090262971e-07,
|
990 |
+
"loss": 0.0418,
|
991 |
+
"step": 2525
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 2.72,
|
995 |
+
"grad_norm": 8.027618408203125,
|
996 |
+
"learning_rate": 4.690831556503199e-07,
|
997 |
+
"loss": 0.0324,
|
998 |
+
"step": 2550
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 2.75,
|
1002 |
+
"grad_norm": 9.084144592285156,
|
1003 |
+
"learning_rate": 4.2466240227434256e-07,
|
1004 |
+
"loss": 0.0286,
|
1005 |
+
"step": 2575
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 2.77,
|
1009 |
+
"grad_norm": 5.414234161376953,
|
1010 |
+
"learning_rate": 3.8024164889836533e-07,
|
1011 |
+
"loss": 0.0416,
|
1012 |
+
"step": 2600
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 2.77,
|
1016 |
+
"eval_accuracy": 0.8753,
|
1017 |
+
"eval_f1_macro": 0.8048163846871306,
|
1018 |
+
"eval_f1_micro": 0.8753,
|
1019 |
+
"eval_loss": 0.6102917790412903,
|
1020 |
+
"eval_runtime": 25.9892,
|
1021 |
+
"eval_samples_per_second": 384.775,
|
1022 |
+
"eval_steps_per_second": 6.041,
|
1023 |
+
"step": 2600
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 2.8,
|
1027 |
+
"grad_norm": 7.557031154632568,
|
1028 |
+
"learning_rate": 3.358208955223881e-07,
|
1029 |
+
"loss": 0.0271,
|
1030 |
+
"step": 2625
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 2.83,
|
1034 |
+
"grad_norm": 5.741875648498535,
|
1035 |
+
"learning_rate": 2.914001421464108e-07,
|
1036 |
+
"loss": 0.0367,
|
1037 |
+
"step": 2650
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 2.85,
|
1041 |
+
"grad_norm": 12.493782997131348,
|
1042 |
+
"learning_rate": 2.4697938877043354e-07,
|
1043 |
+
"loss": 0.0274,
|
1044 |
+
"step": 2675
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 2.88,
|
1048 |
+
"grad_norm": 2.7892916202545166,
|
1049 |
+
"learning_rate": 2.0255863539445632e-07,
|
1050 |
+
"loss": 0.0353,
|
1051 |
+
"step": 2700
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 2.88,
|
1055 |
+
"eval_accuracy": 0.8749,
|
1056 |
+
"eval_f1_macro": 0.8053988442835892,
|
1057 |
+
"eval_f1_micro": 0.8749,
|
1058 |
+
"eval_loss": 0.6117515563964844,
|
1059 |
+
"eval_runtime": 25.6582,
|
1060 |
+
"eval_samples_per_second": 389.74,
|
1061 |
+
"eval_steps_per_second": 6.119,
|
1062 |
+
"step": 2700
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 2.91,
|
1066 |
+
"grad_norm": 5.350805759429932,
|
1067 |
+
"learning_rate": 1.5813788201847903e-07,
|
1068 |
+
"loss": 0.0261,
|
1069 |
+
"step": 2725
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 2.93,
|
1073 |
+
"grad_norm": 11.953265190124512,
|
1074 |
+
"learning_rate": 1.1371712864250178e-07,
|
1075 |
+
"loss": 0.0377,
|
1076 |
+
"step": 2750
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 2.96,
|
1080 |
+
"grad_norm": 13.371731758117676,
|
1081 |
+
"learning_rate": 6.929637526652453e-08,
|
1082 |
+
"loss": 0.0255,
|
1083 |
+
"step": 2775
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 2.99,
|
1087 |
+
"grad_norm": 15.417765617370605,
|
1088 |
+
"learning_rate": 2.4875621890547265e-08,
|
1089 |
+
"loss": 0.0308,
|
1090 |
+
"step": 2800
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 2.99,
|
1094 |
+
"eval_accuracy": 0.875,
|
1095 |
+
"eval_f1_macro": 0.805663420581269,
|
1096 |
+
"eval_f1_micro": 0.875,
|
1097 |
+
"eval_loss": 0.611430287361145,
|
1098 |
+
"eval_runtime": 25.9862,
|
1099 |
+
"eval_samples_per_second": 384.819,
|
1100 |
+
"eval_steps_per_second": 6.042,
|
1101 |
+
"step": 2800
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 3.0,
|
1105 |
+
"step": 2814,
|
1106 |
+
"total_flos": 1.6801018930213683e+17,
|
1107 |
+
"train_loss": 0.42635450247932005,
|
1108 |
+
"train_runtime": 3623.2348,
|
1109 |
+
"train_samples_per_second": 49.679,
|
1110 |
+
"train_steps_per_second": 0.777
|
1111 |
+
}
|
1112 |
+
],
|
1113 |
+
"logging_steps": 25,
|
1114 |
+
"max_steps": 2814,
|
1115 |
+
"num_input_tokens_seen": 0,
|
1116 |
+
"num_train_epochs": 3,
|
1117 |
+
"save_steps": 100,
|
1118 |
+
"total_flos": 1.6801018930213683e+17,
|
1119 |
+
"train_batch_size": 32,
|
1120 |
+
"trial_name": null,
|
1121 |
+
"trial_params": null
|
1122 |
+
}
|
Qwen/Qwen1.5_1.8B_ledgar/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f26a8af75d31668209ed94c987a4170cdf12fb1b08369f54b4ac17f6f18edc56
|
3 |
+
size 5944
|
Qwen/Qwen1.5_1.8B_ledgar/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|