--- license: cc-by-4.0 --- # ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video(ECCV2024) This repo is the official model checkpoints of ["ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video"](https://arxiv.org/abs/2310.01324)(ECCV2024) ## Models We provide the checkpoints before reparameterization, you could reparameter the weight refer to `tools\weight_reparam.py` in our [codes](https://github.com/MCG-NJU/ZeroI2V/blob/main/tools/weight_reparam.py). ### Kinetics 400 | Backbone | Pretrain | GFLOPs | Param | New Param (M) | acc@1 | Views | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | ViT-B/16 | CLIP | 422 | 86 | 0 | 83.0 | 8x1x3 | | ViT-L/14 | CLIP | 1946 | 304 | 0 | 86.3 | 8x1x3 | | ViT-L/14 | CLIP | 7783 | 304 | 0 | 87.2 | 32x1x3 | ### Something Something V2 | Backbone | Pretrain | GFLOPs | Param | New Param (M) | acc@1 | Views | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | ViT-L/14 | CLIP | 7783 | 304 | 0 | 72.2 | 32x3x1 | If you find our work useful in your research, please cite: ``` @article{li2023zeroi2v, title={ZeroI2V: Zero-Cost Adaptation of Pre-trained Transformers from Image to Video}, author={Li, Xinhao and Zhu, Yuhan and Wang, Limin}, journal={arXiv preprint arXiv:2310.01324}, year={2023} } ```