update readme
Browse files
README.md
CHANGED
@@ -11,7 +11,7 @@ datasets:
|
|
11 |
|
12 |
## Introduction
|
13 |
|
14 |
-
The Imp project aims to provide a family of highly capable yet lightweight LMMs. Our `Imp-v1.5-2B-Qwen1.5` is a strong
|
15 |
|
16 |
As shown in the Table below, `Imp-v1.5-2B-Qwen1.5` significantly outperforms the counterparts of similar model sizes.
|
17 |
|
@@ -60,7 +60,7 @@ print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True
|
|
60 |
```
|
61 |
|
62 |
## Model evaluation
|
63 |
-
We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing
|
64 |
|
65 |
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMBCN |MM-Vet|
|
66 |
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
|
|
11 |
|
12 |
## Introduction
|
13 |
|
14 |
+
The Imp project aims to provide a family of highly capable yet lightweight LMMs. Our `Imp-v1.5-2B-Qwen1.5` is a strong lightweight LMM with only **2B** parameters, which is build upon [Qwen1.5-1.8B-Chat ](https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat)(1.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on on 1M mixed dataset.
|
15 |
|
16 |
As shown in the Table below, `Imp-v1.5-2B-Qwen1.5` significantly outperforms the counterparts of similar model sizes.
|
17 |
|
|
|
60 |
```
|
61 |
|
62 |
## Model evaluation
|
63 |
+
We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA benchmarks and 4 popular MLLM benchmarks, to compare our Imp model with LLaVA (7B) and existing lightweight LMMs of similar model sizes.
|
64 |
|
65 |
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMBCN |MM-Vet|
|
66 |
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|