update readme
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ datasets:
|
|
12 |
|
13 |
## Introduction
|
14 |
|
15 |
-
The Imp project aims to provide a family of
|
16 |
|
17 |
|
18 |
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
|
@@ -27,7 +27,7 @@ pip install transformers # latest version is ok, but we recommend v4.36.0
|
|
27 |
pip install -q pillow accelerate einops
|
28 |
```
|
29 |
|
30 |
-
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA).
|
31 |
|
32 |
```Python
|
33 |
import torch
|
@@ -65,7 +65,8 @@ We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA be
|
|
65 |
|
66 |
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
|
67 |
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
68 |
-
| Imp-v1.5-4B-Phi3| 4B | 81.
|
|
|
69 |
|
70 |
|
71 |
|
|
|
12 |
|
13 |
## Introduction
|
14 |
|
15 |
+
The Imp project aims to provide a family of strong multimodal lightweight LMMs. Our `Imp-v1.5-4B-Phi3` is a strong MSLM with only **4B** parameters, which is build upon a small yet powerful SLM [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
|
16 |
|
17 |
|
18 |
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
|
|
|
27 |
pip install -q pillow accelerate einops
|
28 |
```
|
29 |
|
30 |
+
You can use the following code for model inference. The format of text instruction is similar to [LLaVA](https://github.com/haotian-liu/LLaVA). Note that the example can only be run on GPUs currently.
|
31 |
|
32 |
```Python
|
33 |
import torch
|
|
|
65 |
|
66 |
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
|
67 |
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
68 |
+
| Imp-v1.5-4B-Phi3| 4B | **81.7** | 63.4 | 76.3|- | **87.0**| 1503.9 |**74.1** |**64.8**|-|
|
69 |
+
| Imp-v1.5-4B-Phi3| 4B | 81.5 | **63.5** | **78.0**|60.2 | 86.9| **1507.7** |73.3 |61.1|44.6|
|
70 |
|
71 |
|
72 |
|