File size: 2,025 Bytes
7cfa0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: gpt2
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: gpt2-finetuned-stationary-update
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2-finetuned-stationary-update

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6156
- Accuracy: 0.7067
- F1: 0.6780

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6691        | 1.0   | 38   | 0.6355          | 0.6667   | 0.5333 |
| 0.6204        | 2.0   | 76   | 0.6287          | 0.69     | 0.6342 |
| 0.5971        | 3.0   | 114  | 0.6185          | 0.6867   | 0.6287 |
| 0.5875        | 4.0   | 152  | 0.6268          | 0.68     | 0.5831 |
| 0.5494        | 5.0   | 190  | 0.6000          | 0.6967   | 0.6420 |
| 0.5272        | 6.0   | 228  | 0.6156          | 0.69     | 0.6180 |
| 0.5026        | 7.0   | 266  | 0.6364          | 0.6833   | 0.6201 |
| 0.4789        | 8.0   | 304  | 0.6179          | 0.71     | 0.6703 |
| 0.4742        | 9.0   | 342  | 0.6198          | 0.7033   | 0.6693 |
| 0.4528        | 10.0  | 380  | 0.6156          | 0.7067   | 0.6780 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0