File size: 2,071 Bytes
91b259e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: roberta-base-finetuned-stationary-chatgptDS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-finetuned-stationary-chatgptDS

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6459
- Accuracy: 0.7367
- F1: 0.7370

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6374        | 1.0   | 75   | 0.6259          | 0.665    | 0.5312 |
| 0.5898        | 2.0   | 150  | 0.5705          | 0.7067   | 0.6957 |
| 0.5349        | 3.0   | 225  | 0.5607          | 0.725    | 0.6971 |
| 0.4875        | 4.0   | 300  | 0.6014          | 0.6717   | 0.6807 |
| 0.4353        | 5.0   | 375  | 0.5648          | 0.73     | 0.7188 |
| 0.414         | 6.0   | 450  | 0.6210          | 0.7383   | 0.7044 |
| 0.3587        | 7.0   | 525  | 0.6130          | 0.7367   | 0.7322 |
| 0.299         | 8.0   | 600  | 0.6070          | 0.7333   | 0.7319 |
| 0.2847        | 9.0   | 675  | 0.6725          | 0.7633   | 0.7519 |
| 0.268         | 10.0  | 750  | 0.6459          | 0.7367   | 0.7370 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0