--- library_name: transformers language: - de license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - MR-Eder/GER-TTS-50-Conversations metrics: - wer model-index: - name: Whisper Large v3 Turbo German - GRAG results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: GER-TTS-50-Conversations type: MR-Eder/GER-TTS-50-Conversations config: default split: None args: 'config: de, split: test' metrics: - name: Wer type: wer value: 15.170289725316048 --- # Whisper Small German - GRAG This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the GER-TTS-50-Conversations dataset. It achieves the following results on the evaluation set: - Loss: 0.4391 - Wer: 15.1703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.066 | 8.3333 | 1000 | 0.3653 | 15.4640 | | 0.0038 | 16.6667 | 2000 | 0.4180 | 15.0235 | | 0.0006 | 25.0 | 3000 | 0.4340 | 15.1882 | | 0.0004 | 33.3333 | 4000 | 0.4391 | 15.1703 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3