File size: 2,119 Bytes
04376c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: SingPurcBERT-UCIRetail
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SingPurcBERT-UCIRetail
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4977
- Accuracy: 0.7858
- F1: 0.7857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 456 | 0.5088 | 0.7652 | 0.7624 |
| 0.5884 | 2.0 | 912 | 0.5192 | 0.7702 | 0.7693 |
| 0.478 | 3.0 | 1368 | 0.4977 | 0.7858 | 0.7857 |
| 0.4144 | 4.0 | 1824 | 0.6869 | 0.7825 | 0.7824 |
| 0.3745 | 5.0 | 2280 | 0.6851 | 0.7932 | 0.7928 |
| 0.3529 | 6.0 | 2736 | 0.8428 | 0.7735 | 0.7735 |
| 0.2819 | 7.0 | 3192 | 1.2367 | 0.7776 | 0.7775 |
| 0.2451 | 8.0 | 3648 | 1.3244 | 0.7669 | 0.7668 |
| 0.1924 | 9.0 | 4104 | 1.5086 | 0.7735 | 0.7735 |
| 0.1428 | 10.0 | 4560 | 1.4940 | 0.7776 | 0.7776 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.0.0
- Datasets 2.14.5
- Tokenizers 0.14.1
|