metadata
license: apache-2.0
library_name: diffusers
pipeline_tag: text-to-image
widget:
- text: city neighborhood
output:
url: 7d3aebe3-a08d-4a31-b5ac-06408e0c835a.jpeg
- text: resort in hawaii
output:
url: a983aca6-9deb-41f5-8e8a-b7932cc83ff4.jpeg
- text: factory
output:
url: be2fb507-af99-4258-a90f-c0df2bbab3ce.jpeg
- text: university campus
output:
url: 12bbc23c-850a-484b-99a6-478c19417993.jpeg
Model Card for Model ID
This is a StableDiffusion based model that synthesizes satellite images given text prompts. The base stable diffusion model used is stable-diffusion-2-1-base (v2-1_512-ema-pruned.ckpt).
- Use it with 🧨 diffusers
- Use it with stablediffusion repository
Model Sources [optional]
- Repository: stable-diffusion
Examples
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained("MVRL/GeoSynth")
pipe = pipe.to("cuda:0")
image = pipe(
"Satellite image features a city neighborhood",
).images[0]
image.save("generated_city.jpg")