|
--- |
|
license: apache-2.0 |
|
library_name: diffusers |
|
pipeline_tag: text-to-image |
|
widget: |
|
- text: city neighborhood |
|
output: |
|
url: 7d3aebe3-a08d-4a31-b5ac-06408e0c835a.jpeg |
|
- text: resort in hawaii |
|
output: |
|
url: a983aca6-9deb-41f5-8e8a-b7932cc83ff4.jpeg |
|
- text: factory |
|
output: |
|
url: be2fb507-af99-4258-a90f-c0df2bbab3ce.jpeg |
|
- text: university campus |
|
output: |
|
url: 12bbc23c-850a-484b-99a6-478c19417993.jpeg |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This is a StableDiffusion based model that synthesizes satellite images given text prompts. The base stable diffusion model used is [stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) (v2-1_512-ema-pruned.ckpt). |
|
|
|
* Use it with 🧨 [diffusers](#examples) |
|
* Use it with [stablediffusion](https://github.com/Stability-AI/stablediffusion) repository |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [stable-diffusion](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) |
|
|
|
## Examples |
|
|
|
```python |
|
from diffusers import StableDiffusionPipeline |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("MVRL/GeoSynth") |
|
pipe = pipe.to("cuda:0") |
|
|
|
image = pipe( |
|
"Satellite image features a city neighborhood", |
|
).images[0] |
|
|
|
image.save("generated_city.jpg") |
|
``` |