import torch import torch.nn as nn from typing import Optional from torch import Tensor import numpy as np from huggingface_hub import PyTorchModelHubMixin # Constants A1 = 1.340264 A2 = -0.081106 A3 = 0.000893 A4 = 0.003796 SF = 66.50336 @torch.jit.script def gaussian_encoding( v: Tensor, b: Tensor) -> Tensor: r"""Computes :math:`\gamma(\mathbf{v}) = (\cos{2 \pi \mathbf{B} \mathbf{v}} , \sin{2 \pi \mathbf{B} \mathbf{v}})` Args: v (Tensor): input tensor of shape :math:`(N, *, \text{input_size})` b (Tensor): projection matrix of shape :math:`(\text{encoded_layer_size}, \text{input_size})` Returns: Tensor: mapped tensor of shape :math:`(N, *, 2 \cdot \text{encoded_layer_size})` See :class:`~rff.layers.GaussianEncoding` for more details. """ vp = 2 * np.pi * v @ b.T return torch.cat((torch.cos(vp), torch.sin(vp)), dim=-1) def sample_b(sigma: float, size: tuple) -> Tensor: r"""Matrix of size :attr:`size` sampled from from :math:`\mathcal{N}(0, \sigma^2)` Args: sigma (float): standard deviation size (tuple): size of the matrix sampled See :class:`~rff.layers.GaussianEncoding` for more details """ return torch.randn(size) * sigma class GaussianEncoding(nn.Module): """Layer for mapping coordinates using random Fourier features""" def __init__(self, sigma: Optional[float] = None, input_size: Optional[float] = None, encoded_size: Optional[float] = None, b: Optional[Tensor] = None): r""" Args: sigma (Optional[float]): standard deviation input_size (Optional[float]): the number of input dimensions encoded_size (Optional[float]): the number of dimensions the `b` matrix maps to b (Optional[Tensor], optional): Optionally specify a :attr:`b` matrix already sampled Raises: ValueError: If :attr:`b` is provided and one of :attr:`sigma`, :attr:`input_size`, or :attr:`encoded_size` is provided. If :attr:`b` is not provided and one of :attr:`sigma`, :attr:`input_size`, or :attr:`encoded_size` is not provided. """ super().__init__() if b is None: if sigma is None or input_size is None or encoded_size is None: raise ValueError( 'Arguments "sigma," "input_size," and "encoded_size" are required.') b = sample_b(sigma, (encoded_size, input_size)) elif sigma is not None or input_size is not None or encoded_size is not None: raise ValueError('Only specify the "b" argument when using it.') self.b = nn.parameter.Parameter(b, requires_grad=False) def forward(self, v: Tensor) -> Tensor: r"""Computes :math:`\gamma(\mathbf{v}) = (\cos{2 \pi \mathbf{B} \mathbf{v}} , \sin{2 \pi \mathbf{B} \mathbf{v}})` Args: v (Tensor): input tensor of shape :math:`(N, *, \text{input_size})` Returns: Tensor: Tensor mapping using random fourier features of shape :math:`(N, *, 2 \cdot \text{encoded_size})` """ return gaussian_encoding(v, self.b) def equal_earth_projection(L): latitude = L[:, 0] longitude = L[:, 1] latitude_rad = torch.deg2rad(latitude) longitude_rad = torch.deg2rad(longitude) sin_theta = (torch.sqrt(torch.tensor(3.0)) / 2) * torch.sin(latitude_rad) theta = torch.asin(sin_theta) denominator = 3 * (9 * A4 * theta**8 + 7 * A3 * theta**6 + 3 * A2 * theta**2 + A1) x = (2 * torch.sqrt(torch.tensor(3.0)) * longitude_rad * torch.cos(theta)) / denominator y = A4 * theta**9 + A3 * theta**7 + A2 * theta**3 + A1 * theta return (torch.stack((x, y), dim=1) * SF) / 180 class LocationEncoderCapsule(nn.Module): def __init__(self, sigma): super(LocationEncoderCapsule, self).__init__() rff_encoding = GaussianEncoding(sigma=sigma, input_size=2, encoded_size=256) self.km = sigma self.capsule = nn.Sequential(rff_encoding, nn.Linear(512, 1024), nn.ReLU(), nn.Linear(1024, 1024), nn.ReLU(), nn.Linear(1024, 1024), nn.ReLU()) self.head = nn.Sequential(nn.Linear(1024, 512)) def forward(self, x): x = self.capsule(x) x = self.head(x) return x class LocationEncoder(nn.Module, PyTorchModelHubMixin): def __init__(self): super(LocationEncoder, self).__init__() self.sigma = [2**0, 2**4, 2**8] self.n = len(self.sigma) for i, s in enumerate(self.sigma): self.add_module('LocEnc' + str(i), LocationEncoderCapsule(sigma=s)) def forward(self, location): location = equal_earth_projection(location) location_features = torch.zeros(location.shape[0], 512).to(location.device) for i in range(self.n): location_features += self._modules['LocEnc' + str(i)](location) return location_features