--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: mt5-small-finetuned-cnn-dailymail results: - task: name: Sequence-to-sequence Language Modeling type: summarization dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: train args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 32.8352 --- # mt5-small-finetuned-cnn-dailymail This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.7294 - Rouge1: 32.8352 - Rouge2: 17.0633 - Rougel: 29.0888 - Rougelsum: 30.8226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 8973 | 1.9272 | 31.6634 | 16.1653 | 28.1624 | 29.7819 | | No log | 2.0 | 17946 | 1.8282 | 32.1032 | 16.4388 | 28.4914 | 30.1856 | | No log | 3.0 | 26919 | 1.7967 | 32.5721 | 16.8392 | 28.8483 | 30.5764 | | 2.1615 | 4.0 | 35892 | 1.7640 | 32.6788 | 16.94 | 28.994 | 30.6883 | | 2.1615 | 5.0 | 44865 | 1.7450 | 32.8129 | 17.048 | 29.0788 | 30.8106 | | 2.1615 | 6.0 | 53838 | 1.7379 | 32.7074 | 16.9641 | 28.9745 | 30.7043 | | 2.1615 | 7.0 | 62811 | 1.7317 | 32.7692 | 17.0116 | 29.0395 | 30.7685 | | 2.0886 | 8.0 | 71784 | 1.7294 | 32.8352 | 17.0633 | 29.0888 | 30.8226 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2