File size: 1,905 Bytes
0c6a373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentiment_analysis_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentiment_analysis_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7543
- Accuracy: 0.8483

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 150  | 0.4045          | 0.8317   |
| No log        | 2.0   | 300  | 0.4403          | 0.83     |
| No log        | 3.0   | 450  | 0.5234          | 0.8325   |
| 0.3116        | 4.0   | 600  | 0.5604          | 0.8367   |
| 0.3116        | 5.0   | 750  | 0.6089          | 0.8425   |
| 0.3116        | 6.0   | 900  | 0.6792          | 0.85     |
| 0.0814        | 7.0   | 1050 | 0.7147          | 0.8508   |
| 0.0814        | 8.0   | 1200 | 0.7421          | 0.8517   |
| 0.0814        | 9.0   | 1350 | 0.7794          | 0.845    |
| 0.0302        | 10.0  | 1500 | 0.7543          | 0.8483   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.13.3