Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1656.19 +/- 88.78
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5de3e1b2acd2f11664c5ba754f63de8dbcf190f5e135a138739003e4a05e12b
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9710a368b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9710a36940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9710a369d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9710a36a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9710a36af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9710a36b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9710a36c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9710a36ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9710a36d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9710a36dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9710a36e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9710a36ee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9710a42500>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1679348824811051565,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADXC0byqVYG9lbMWP3jvyb0tKcq+dOwYPmNpjz6N0hK+SkPJPYU8iD9V1PU+N3P7PWXsYb+L824/mOW+u/Gp3j51wE0+vHi3vWn3lD4dP4k+hOMIv5XDzD4oNtC70/DVPsESMj/Tuqw+zQnqPgqDQD8ipvU+jU6kv6hcsb55r9U/hgzHPRfmbL/ZWy4+4pfNv7b9jD8PZ7a+Yh0aPzZi27+VMIi/aE3HPzYVlz5qc5Q+6I2lvt7X1z9srYQ/f1Bkv/Jv+D5J4BdAti4rv1jeDECfA7i/07qsPuICDMB/Nqq/fhEsPiY9Lb82Nqc+MqZiP6Ghfb/mJi4/QUy7P/KWQr5Qkp8/80uvvjpizj9keAG/E85uv31bGL9fpZO/VA1Dv6iAeT8I66G+e2F9P1cXKr5Oits+p5Nqv0Anzr6z40o/wRIyP9O6rD7NCeo+fzaqv3Rk6j7l+JW/P9M7vn49HkBhAQE/cE0oP/7ajj/RovG/PdERvjHK2D+0d5U+HcxBQCqpmj70pCJACz3iPrZ3HkBIrMw/mvMVvCEbPz8H1Fk/cq4nv39tA0B6l7K9bVLMv58DuL/Tuqw+zQnqPn82qr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAWkwa3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADAF8PQAAAAC6D/a/AAAAAIrol70AAAAAFjLqPwAAAADUuKy9AAAAAFm19T8AAAAAI/31PQAAAAAZkOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArKqbNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKKbDzwAAAAAnP/+vwAAAADwaZ08AAAAAFj67j8AAAAAbMPhPQAAAAAcGuQ/AAAAAMSehj0AAAAAPXHkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPRMjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3i7i6AAAAAK1l/b8AAAAAFPfaPQAAAABZnOE/AAAAAKN+uT0AAAAA6XLZPwAAAAAWsac9AAAAALEj378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOvze2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAJpovQAAAADZre+/AAAAAMdUfT0AAAAAUHXrPwAAAACvztq9AAAAAHPxAEAAAAAAdl31PQAAAABSmQDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS/N7E5yU+MAWyUTegDjAF0lEdArrfH779AHHV9lChoBkdAlQWRoh6jWWgHTegDaAhHQK64s/0NBnl1fZQoaAZHQJWF0QVbiZRoB03oA2gIR0CuvZFhgE2YdX2UKGgGR0CTGrbkfcN6aAdN6ANoCEdArsAKGL1mJ3V9lChoBkdAlg6z/hl182gHTegDaAhHQK7HPbUwztV1fZQoaAZHQJYSWKl54W1oB03oA2gIR0CuyMzdcjZ+dX2UKGgGR0CO+JV2icoZaAdN6ANoCEdArs91pj+aSnV9lChoBkdAlYnxYq5LAmgHTegDaAhHQK7R4Dh99c91fZQoaAZHQJaA+5Gz8gpoB03oA2gIR0Cu1s55Z8rqdX2UKGgGR0CUxRJ1q33IaAdN6ANoCEdArte77yhBaHV9lChoBkdAlT1AlOXVsmgHTegDaAhHQK7cepsoDxN1fZQoaAZHQJPlV0mtyPxoB03oA2gIR0Cu3vvdVNpNdX2UKGgGR0CS1gM+/xlQaAdN6ANoCEdAruVL349HMHV9lChoBkdAkOzx/ViF02gHTegDaAhHQK7mq1Z1V5t1fZQoaAZHQJO+DFId2gZoB03oA2gIR0Cu7f5OJtSAdX2UKGgGR0CSbabmlqJuaAdN6ANoCEdArvCFPi1iOXV9lChoBkdAkIFSYoiLVGgHTegDaAhHQK71d4SHuZ11fZQoaAZHQJEH2hlDneVoB03oA2gIR0Cu9llS88LbdX2UKGgGR0CTwEpt78ekaAdN6ANoCEdArvt1ByCFsnV9lChoBkdAkdzJjDsMRmgHTegDaAhHQK7+D6v7m+11fZQoaAZHQJNDXkBCD29oB03oA2gIR0CvA+CEQGwBdX2UKGgGR0CQa0gxJul5aAdN6ANoCEdArwUvdEb5unV9lChoBkdAlLhzyvs7dWgHTegDaAhHQK8NDrAxi5N1fZQoaAZHQJK6+CGvfTFoB03oA2gIR0CvD5IWP91mdX2UKGgGR0CTDtt78ejmaAdN6ANoCEdArxSKoCMglnV9lChoBkdAkHJmXXyy2WgHTegDaAhHQK8Vcx46fap1fZQoaAZHQJH6d+F10T1oB03oA2gIR0CvGlD4QBgedX2UKGgGR0CULlvduYQbaAdN6ANoCEdArxznmHP/rHV9lChoBkdAk2eEKzAvc2gHTegDaAhHQK8iUv9LpRp1fZQoaAZHQIBsg4CIUJxoB03oA2gIR0CvI61h9b5edX2UKGgGR0CSqjt9hJAdaAdN6ANoCEdArytsI/qxDHV9lChoBkdAlJh7WAf+0mgHTegDaAhHQK8ulOgxrSF1fZQoaAZHQJR+kKKHfuVoB03oA2gIR0CvM7pdjXnRdX2UKGgGR0CUehhTfixWaAdN6ANoCEdArzSmpZOi4HV9lChoBkdAlA2CV4X402gHTegDaAhHQK85ms4DLbJ1fZQoaAZHQJLggTM7lq9oB03oA2gIR0CvPBBBJI1+dX2UKGgGR0CSxh2+PBBSaAdN6ANoCEdAr0EIna37UHV9lChoBkdAkgTle8f3e2gHTegDaAhHQK9CXK6Fuel1fZQoaAZHQJOL3Fo+OfdoB03oA2gIR0CvShryDqW1dX2UKGgGR0CTPY9LHuJDaAdN6ANoCEdAr03TaEi+tnV9lChoBkdAklPQ8fV7QmgHTegDaAhHQK9S6Py08eV1fZQoaAZHQJEGmctoSL9oB03oA2gIR0CvU9WepXIVdX2UKGgGR0CSc3l+3H7xaAdN6ANoCEdAr1jDyjHn2nV9lChoBkdAkowRMajveGgHTegDaAhHQK9bU2G7Bft1fZQoaAZHQJB9riWE9MdoB03oA2gIR0CvYHJCrtE5dX2UKGgGR0CM5l+iJwbVaAdN6ANoCEdAr2GPQMQVbnV9lChoBkdAkyU8AvL5h2gHTegDaAhHQK9pb1mJ3xF1fZQoaAZHQJIlU+4b0e5oB03oA2gIR0CvbXkn9ehPdX2UKGgGR0CUmrFN+LFXaAdN6ANoCEdAr3KRHd43WHV9lChoBkdAk4B7ZBcAzmgHTegDaAhHQK9zhE6T4cp1fZQoaAZHQJXzlipeeFtoB03oA2gIR0CveH0OEug6dX2UKGgGR0CUqzOjqOcUaAdN6ANoCEdAr3r7FuNxVHV9lChoBkdAkhPBXKbKBGgHTegDaAhHQK+AAsH0K7Z1fZQoaAZHQJSYnEgntv5oB03oA2gIR0CvgOKzJIUbdX2UKGgGR0CTPmYgaFVUaAdN6ANoCEdAr4gdDv3JxXV9lChoBkdAlNW2ycCo0mgHTegDaAhHQK+MXttygf51fZQoaAZHQJQNwizLOiZoB03oA2gIR0CvkfLs0HhTdX2UKGgGR0CQ91q9oN/faAdN6ANoCEdAr5LkSAYpD3V9lChoBkdAkZ7mbXpW3mgHTegDaAhHQK+XxF1jiGZ1fZQoaAZHQJHAwOAiFCdoB03oA2gIR0Cvmj+vyLAIdX2UKGgGR0CR1sEuxrzoaAdN6ANoCEdAr586aTfR/nV9lChoBkdAknSSxeLNwGgHTegDaAhHQK+gFhNucc51fZQoaAZHQJILmh11W81oB03oA2gIR0CvptfhddE9dX2UKGgGR0CQGn6lLvkSaAdN6ANoCEdAr6rzXUYsNHV9lChoBkdAk9GBOgxrSGgHTegDaAhHQK+xH6D5CWx1fZQoaAZHQJKtCc3EQ5FoB03oA2gIR0CvsgiWeHzpdX2UKGgGR0CUICdJJ5E/aAdN6ANoCEdAr7b3wkPcz3V9lChoBkdAlPQuOOsDGWgHTegDaAhHQK+5dG+bmU51fZQoaAZHQJUjsFwDNhVoB03oA2gIR0Cvvm+qJdjYdX2UKGgGR0CVDUxri2lVaAdN6ANoCEdAr79ZTGYKIHV9lChoBkdAlhz2GM4tH2gHTegDaAhHQK/Fm4MnZ011fZQoaAZHQJYMeBas6q9oB03oA2gIR0CvyaePRzBAdX2UKGgGR0CW44lMh5gPaAdN6ANoCEdAr9Anv+fh/HV9lChoBkdAlZc05yU9p2gHTegDaAhHQK/RDXJYDDF1fZQoaAZHQJZrYwJw84hoB03oA2gIR0Cv1cLtVrAQdX2UKGgGR0CW0oA/LTx5aAdN6ANoCEdAr9gt9jPOZHV9lChoBkdAl4QI+Sr5qWgHTegDaAhHQK/dMj7hvR91fZQoaAZHQJbuVw++ueVoB03oA2gIR0Cv3gzUy57PdX2UKGgGR0CWkyAiV0LdaAdN6ANoCEdAr+PHvWpZOnV9lChoBkdAlo0hYA80UGgHTegDaAhHQK/nduBMBZJ1fZQoaAZHQJXr0/qxC6ZoB03oA2gIR0Cv7vhakhzOdX2UKGgGR0CXJOfbsWweaAdN6ANoCEdAr+/hRO1v23V9lChoBkdAmHc91uBMBmgHTegDaAhHQK/0oVmjCYV1fZQoaAZHQJiVhTn7pFFoB03oA2gIR0Cv9xWluWKNdX2UKGgGR0CYKryHVPN3aAdN6ANoCEdAr/wDpxFRYXV9lChoBkdAl8RarmyPdWgHTegDaAhHQK/85qM3qA11fZQoaAZHQJcmSRwIdENoB03oA2gIR0CwAN4IjW07dX2UKGgGR0CXnAk+HJtBaAdN6ANoCEdAsALIiLVFyHV9lChoBkdAlKMH8GcFyWgHTegDaAhHQLAG6WdEsrd1fZQoaAZHQJQ/jn5i3G5oB03oA2gIR0CwB14u01IidX2UKGgGR0CTD3JmNBGAaAdN6ANoCEdAsAnILux8lXV9lChoBkdAkZ+6dDpkgGgHTegDaAhHQLAK/z6ab4J1fZQoaAZHQJL21flZHNJoB03oA2gIR0CwDXifcvdudX2UKGgGR0CWb4MXrMTwaAdN6ANoCEdAsA3t43WFvnV9lChoBkdAmGOWATZg5WgHTegDaAhHQLAQWTV2A5J1fZQoaAZHQJj1ohib2DhoB03oA2gIR0CwEeC5mRNidX2UKGgGR0COJ/DNyHVPaAdN6ANoCEdAsBXwJ0GNaXV9lChoBkdAmEYNFWn0kGgHTegDaAhHQLAWtBikO7R1fZQoaAZHQJhhaGQCCBhoB03oA2gIR0CwGVDFAE+xdX2UKGgGR0CWRu2VVxS6aAdN6ANoCEdAsBqaynk1dnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87b7da7d86b5082b2d97e58b6f99dac0bbd48181b9c460b5d939a360c71052b8
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82321329738a8cde71b36c6ddb5517d4d785cec1237c95e10f21d1d959797662
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9710a368b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9710a36940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9710a369d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9710a36a60>", "_build": "<function ActorCriticPolicy._build at 0x7f9710a36af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9710a36b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9710a36c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9710a36ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9710a36d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9710a36dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9710a36e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9710a36ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9710a42500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679348824811051565, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADXC0byqVYG9lbMWP3jvyb0tKcq+dOwYPmNpjz6N0hK+SkPJPYU8iD9V1PU+N3P7PWXsYb+L824/mOW+u/Gp3j51wE0+vHi3vWn3lD4dP4k+hOMIv5XDzD4oNtC70/DVPsESMj/Tuqw+zQnqPgqDQD8ipvU+jU6kv6hcsb55r9U/hgzHPRfmbL/ZWy4+4pfNv7b9jD8PZ7a+Yh0aPzZi27+VMIi/aE3HPzYVlz5qc5Q+6I2lvt7X1z9srYQ/f1Bkv/Jv+D5J4BdAti4rv1jeDECfA7i/07qsPuICDMB/Nqq/fhEsPiY9Lb82Nqc+MqZiP6Ghfb/mJi4/QUy7P/KWQr5Qkp8/80uvvjpizj9keAG/E85uv31bGL9fpZO/VA1Dv6iAeT8I66G+e2F9P1cXKr5Oits+p5Nqv0Anzr6z40o/wRIyP9O6rD7NCeo+fzaqv3Rk6j7l+JW/P9M7vn49HkBhAQE/cE0oP/7ajj/RovG/PdERvjHK2D+0d5U+HcxBQCqpmj70pCJACz3iPrZ3HkBIrMw/mvMVvCEbPz8H1Fk/cq4nv39tA0B6l7K9bVLMv58DuL/Tuqw+zQnqPn82qr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAWkwa3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADAF8PQAAAAC6D/a/AAAAAIrol70AAAAAFjLqPwAAAADUuKy9AAAAAFm19T8AAAAAI/31PQAAAAAZkOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArKqbNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKKbDzwAAAAAnP/+vwAAAADwaZ08AAAAAFj67j8AAAAAbMPhPQAAAAAcGuQ/AAAAAMSehj0AAAAAPXHkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPRMjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3i7i6AAAAAK1l/b8AAAAAFPfaPQAAAABZnOE/AAAAAKN+uT0AAAAA6XLZPwAAAAAWsac9AAAAALEj378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOvze2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAJpovQAAAADZre+/AAAAAMdUfT0AAAAAUHXrPwAAAACvztq9AAAAAHPxAEAAAAAAdl31PQAAAABSmQDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS/N7E5yU+MAWyUTegDjAF0lEdArrfH779AHHV9lChoBkdAlQWRoh6jWWgHTegDaAhHQK64s/0NBnl1fZQoaAZHQJWF0QVbiZRoB03oA2gIR0CuvZFhgE2YdX2UKGgGR0CTGrbkfcN6aAdN6ANoCEdArsAKGL1mJ3V9lChoBkdAlg6z/hl182gHTegDaAhHQK7HPbUwztV1fZQoaAZHQJYSWKl54W1oB03oA2gIR0CuyMzdcjZ+dX2UKGgGR0CO+JV2icoZaAdN6ANoCEdArs91pj+aSnV9lChoBkdAlYnxYq5LAmgHTegDaAhHQK7R4Dh99c91fZQoaAZHQJaA+5Gz8gpoB03oA2gIR0Cu1s55Z8rqdX2UKGgGR0CUxRJ1q33IaAdN6ANoCEdArte77yhBaHV9lChoBkdAlT1AlOXVsmgHTegDaAhHQK7cepsoDxN1fZQoaAZHQJPlV0mtyPxoB03oA2gIR0Cu3vvdVNpNdX2UKGgGR0CS1gM+/xlQaAdN6ANoCEdAruVL349HMHV9lChoBkdAkOzx/ViF02gHTegDaAhHQK7mq1Z1V5t1fZQoaAZHQJO+DFId2gZoB03oA2gIR0Cu7f5OJtSAdX2UKGgGR0CSbabmlqJuaAdN6ANoCEdArvCFPi1iOXV9lChoBkdAkIFSYoiLVGgHTegDaAhHQK71d4SHuZ11fZQoaAZHQJEH2hlDneVoB03oA2gIR0Cu9llS88LbdX2UKGgGR0CTwEpt78ekaAdN6ANoCEdArvt1ByCFsnV9lChoBkdAkdzJjDsMRmgHTegDaAhHQK7+D6v7m+11fZQoaAZHQJNDXkBCD29oB03oA2gIR0CvA+CEQGwBdX2UKGgGR0CQa0gxJul5aAdN6ANoCEdArwUvdEb5unV9lChoBkdAlLhzyvs7dWgHTegDaAhHQK8NDrAxi5N1fZQoaAZHQJK6+CGvfTFoB03oA2gIR0CvD5IWP91mdX2UKGgGR0CTDtt78ejmaAdN6ANoCEdArxSKoCMglnV9lChoBkdAkHJmXXyy2WgHTegDaAhHQK8Vcx46fap1fZQoaAZHQJH6d+F10T1oB03oA2gIR0CvGlD4QBgedX2UKGgGR0CULlvduYQbaAdN6ANoCEdArxznmHP/rHV9lChoBkdAk2eEKzAvc2gHTegDaAhHQK8iUv9LpRp1fZQoaAZHQIBsg4CIUJxoB03oA2gIR0CvI61h9b5edX2UKGgGR0CSqjt9hJAdaAdN6ANoCEdArytsI/qxDHV9lChoBkdAlJh7WAf+0mgHTegDaAhHQK8ulOgxrSF1fZQoaAZHQJR+kKKHfuVoB03oA2gIR0CvM7pdjXnRdX2UKGgGR0CUehhTfixWaAdN6ANoCEdArzSmpZOi4HV9lChoBkdAlA2CV4X402gHTegDaAhHQK85ms4DLbJ1fZQoaAZHQJLggTM7lq9oB03oA2gIR0CvPBBBJI1+dX2UKGgGR0CSxh2+PBBSaAdN6ANoCEdAr0EIna37UHV9lChoBkdAkgTle8f3e2gHTegDaAhHQK9CXK6Fuel1fZQoaAZHQJOL3Fo+OfdoB03oA2gIR0CvShryDqW1dX2UKGgGR0CTPY9LHuJDaAdN6ANoCEdAr03TaEi+tnV9lChoBkdAklPQ8fV7QmgHTegDaAhHQK9S6Py08eV1fZQoaAZHQJEGmctoSL9oB03oA2gIR0CvU9WepXIVdX2UKGgGR0CSc3l+3H7xaAdN6ANoCEdAr1jDyjHn2nV9lChoBkdAkowRMajveGgHTegDaAhHQK9bU2G7Bft1fZQoaAZHQJB9riWE9MdoB03oA2gIR0CvYHJCrtE5dX2UKGgGR0CM5l+iJwbVaAdN6ANoCEdAr2GPQMQVbnV9lChoBkdAkyU8AvL5h2gHTegDaAhHQK9pb1mJ3xF1fZQoaAZHQJIlU+4b0e5oB03oA2gIR0CvbXkn9ehPdX2UKGgGR0CUmrFN+LFXaAdN6ANoCEdAr3KRHd43WHV9lChoBkdAk4B7ZBcAzmgHTegDaAhHQK9zhE6T4cp1fZQoaAZHQJXzlipeeFtoB03oA2gIR0CveH0OEug6dX2UKGgGR0CUqzOjqOcUaAdN6ANoCEdAr3r7FuNxVHV9lChoBkdAkhPBXKbKBGgHTegDaAhHQK+AAsH0K7Z1fZQoaAZHQJSYnEgntv5oB03oA2gIR0CvgOKzJIUbdX2UKGgGR0CTPmYgaFVUaAdN6ANoCEdAr4gdDv3JxXV9lChoBkdAlNW2ycCo0mgHTegDaAhHQK+MXttygf51fZQoaAZHQJQNwizLOiZoB03oA2gIR0CvkfLs0HhTdX2UKGgGR0CQ91q9oN/faAdN6ANoCEdAr5LkSAYpD3V9lChoBkdAkZ7mbXpW3mgHTegDaAhHQK+XxF1jiGZ1fZQoaAZHQJHAwOAiFCdoB03oA2gIR0Cvmj+vyLAIdX2UKGgGR0CR1sEuxrzoaAdN6ANoCEdAr586aTfR/nV9lChoBkdAknSSxeLNwGgHTegDaAhHQK+gFhNucc51fZQoaAZHQJILmh11W81oB03oA2gIR0CvptfhddE9dX2UKGgGR0CQGn6lLvkSaAdN6ANoCEdAr6rzXUYsNHV9lChoBkdAk9GBOgxrSGgHTegDaAhHQK+xH6D5CWx1fZQoaAZHQJKtCc3EQ5FoB03oA2gIR0CvsgiWeHzpdX2UKGgGR0CUICdJJ5E/aAdN6ANoCEdAr7b3wkPcz3V9lChoBkdAlPQuOOsDGWgHTegDaAhHQK+5dG+bmU51fZQoaAZHQJUjsFwDNhVoB03oA2gIR0Cvvm+qJdjYdX2UKGgGR0CVDUxri2lVaAdN6ANoCEdAr79ZTGYKIHV9lChoBkdAlhz2GM4tH2gHTegDaAhHQK/Fm4MnZ011fZQoaAZHQJYMeBas6q9oB03oA2gIR0CvyaePRzBAdX2UKGgGR0CW44lMh5gPaAdN6ANoCEdAr9Anv+fh/HV9lChoBkdAlZc05yU9p2gHTegDaAhHQK/RDXJYDDF1fZQoaAZHQJZrYwJw84hoB03oA2gIR0Cv1cLtVrAQdX2UKGgGR0CW0oA/LTx5aAdN6ANoCEdAr9gt9jPOZHV9lChoBkdAl4QI+Sr5qWgHTegDaAhHQK/dMj7hvR91fZQoaAZHQJbuVw++ueVoB03oA2gIR0Cv3gzUy57PdX2UKGgGR0CWkyAiV0LdaAdN6ANoCEdAr+PHvWpZOnV9lChoBkdAlo0hYA80UGgHTegDaAhHQK/nduBMBZJ1fZQoaAZHQJXr0/qxC6ZoB03oA2gIR0Cv7vhakhzOdX2UKGgGR0CXJOfbsWweaAdN6ANoCEdAr+/hRO1v23V9lChoBkdAmHc91uBMBmgHTegDaAhHQK/0oVmjCYV1fZQoaAZHQJiVhTn7pFFoB03oA2gIR0Cv9xWluWKNdX2UKGgGR0CYKryHVPN3aAdN6ANoCEdAr/wDpxFRYXV9lChoBkdAl8RarmyPdWgHTegDaAhHQK/85qM3qA11fZQoaAZHQJcmSRwIdENoB03oA2gIR0CwAN4IjW07dX2UKGgGR0CXnAk+HJtBaAdN6ANoCEdAsALIiLVFyHV9lChoBkdAlKMH8GcFyWgHTegDaAhHQLAG6WdEsrd1fZQoaAZHQJQ/jn5i3G5oB03oA2gIR0CwB14u01IidX2UKGgGR0CTD3JmNBGAaAdN6ANoCEdAsAnILux8lXV9lChoBkdAkZ+6dDpkgGgHTegDaAhHQLAK/z6ab4J1fZQoaAZHQJL21flZHNJoB03oA2gIR0CwDXifcvdudX2UKGgGR0CWb4MXrMTwaAdN6ANoCEdAsA3t43WFvnV9lChoBkdAmGOWATZg5WgHTegDaAhHQLAQWTV2A5J1fZQoaAZHQJj1ohib2DhoB03oA2gIR0CwEeC5mRNidX2UKGgGR0COJ/DNyHVPaAdN6ANoCEdAsBXwJ0GNaXV9lChoBkdAmEYNFWn0kGgHTegDaAhHQLAWtBikO7R1fZQoaAZHQJhhaGQCCBhoB03oA2gIR0CwGVDFAE+xdX2UKGgGR0CWRu2VVxS6aAdN6ANoCEdAsBqaynk1dnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f43f87fc0dbc8009f4dab2db57a415c05bd5be117a540f78fa584ec9b32b426d
|
3 |
+
size 1076820
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1656.1857000342104, "std_reward": 88.78090218242137, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-20T23:05:55.786250"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ec4bffb9e76d4618697de67b6969af5265c10e709d35edddf3b0878b9f88686
|
3 |
+
size 2136
|