MakiPan commited on
Commit
bd697cf
1 Parent(s): a00b73f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.52 +/- 0.26
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7e1b7707439ef609236ec2e15453de0de18128ca19f2a280f1aaaa8bec6fc98
3
+ size 108028
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9710a44040>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f9710a426c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679353641113622656,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABnmoPtoSnr05rQA/BnmoPtoSnr05rQA/BnmoPtoSnr05rQA/BnmoPtoSnr05rQA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI2NKP3JLCb98yB4/ez2Zv1Ukjz9xjdU/G+Opv7lcnL8Ex1y++D67v0kWDr44q+G+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAGeag+2hKevTmtAD8wCeM8ubz7uzGYwDwGeag+2hKevTmtAD8wCeM8ubz7uzGYwDwGeag+2hKevTmtAD8wCeM8ubz7uzGYwDwGeag+2hKevTmtAD8wCeM8ubz7uzGYwDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.32904834 -0.07718439 0.50264317]\n [ 0.32904834 -0.07718439 0.50264317]\n [ 0.32904834 -0.07718439 0.50264317]\n [ 0.32904834 -0.07718439 0.50264317]]",
60
+ "desired_goal": "[[ 0.7905752 -0.53630745 0.62024665]\n [-1.1971887 1.1182963 1.668379 ]\n [-1.3272432 -1.2215797 -0.21560293]\n [-1.4628592 -0.13875689 -0.44075942]]",
61
+ "observation": "[[ 0.32904834 -0.07718439 0.50264317 0.02771434 -0.00768241 0.02351007]\n [ 0.32904834 -0.07718439 0.50264317 0.02771434 -0.00768241 0.02351007]\n [ 0.32904834 -0.07718439 0.50264317 0.02771434 -0.00768241 0.02351007]\n [ 0.32904834 -0.07718439 0.50264317 0.02771434 -0.00768241 0.02351007]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPffqvKllwL0/ZU0+BbHFvTbqDr66IrM9wfYlvYZU5r2La00+CD+fPSFprz3i7oY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.02868235 -0.0939439 0.20058154]\n [-0.09652904 -0.13956532 0.08746858]\n [-0.04051853 -0.1124659 0.20060556]\n [ 0.07775694 0.08564974 0.26354128]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBRVVv9L54r+UhpRSlIwBbJRLMowBdJRHQKs0s2aUiY91fZQoaAZoCWgPQwhiE5m5wOXov5SGlFKUaBVLMmgWR0CrNHTC1qnFdX2UKGgGaAloD0MI7s7abRea8L+UhpRSlGgVSzJoFkdAqzQxk9U0enV9lChoBmgJaA9DCKURM/s8xuy/lIaUUpRoFUsyaBZHQKsz8mD15B11fZQoaAZoCWgPQwhvDAHAsef3v5SGlFKUaBVLMmgWR0CrNebR4QjEdX2UKGgGaAloD0MI0UGXcOit7L+UhpRSlGgVSzJoFkdAqzWoMfA9FHV9lChoBmgJaA9DCKMdN/xuuuO/lIaUUpRoFUsyaBZHQKs1ZS3solV1fZQoaAZoCWgPQwiNJhdjYJ3ov5SGlFKUaBVLMmgWR0CrNSYMvyskdX2UKGgGaAloD0MI5L9AECDD67+UhpRSlGgVSzJoFkdAqzcWuoxYaHV9lChoBmgJaA9DCKkwthDkIO6/lIaUUpRoFUsyaBZHQKs22Cwr1/V1fZQoaAZoCWgPQwjfh4OEKN/jv5SGlFKUaBVLMmgWR0CrNpUN8VpLdX2UKGgGaAloD0MIsMivH2KD77+UhpRSlGgVSzJoFkdAqzZVloUSI3V9lChoBmgJaA9DCM+fNqrTge2/lIaUUpRoFUsyaBZHQKs4Q5AhStN1fZQoaAZoCWgPQwgVjiCVYof2v5SGlFKUaBVLMmgWR0CrOATZpSJkdX2UKGgGaAloD0MIy2Wjc36K87+UhpRSlGgVSzJoFkdAqzfBsuWa+nV9lChoBmgJaA9DCAra5PBJJ+i/lIaUUpRoFUsyaBZHQKs3goESuhd1fZQoaAZoCWgPQwj8NsR4zSviv5SGlFKUaBVLMmgWR0CrOYGUOd5IdX2UKGgGaAloD0MITRJLyt3n6L+UhpRSlGgVSzJoFkdAqzlDBZZB9nV9lChoBmgJaA9DCEuS5/o+HOy/lIaUUpRoFUsyaBZHQKs5AANoak11fZQoaAZoCWgPQwiEZWzoZn/qv5SGlFKUaBVLMmgWR0CrOMDMV1wHdX2UKGgGaAloD0MIRnu8kA4P8b+UhpRSlGgVSzJoFkdAqzrxakhzNnV9lChoBmgJaA9DCENU4c/wZvK/lIaUUpRoFUsyaBZHQKs6s+2VmjF1fZQoaAZoCWgPQwia0CSxpFzzv5SGlFKUaBVLMmgWR0CrOnD/lyR0dX2UKGgGaAloD0MIY2Adxw+V5r+UhpRSlGgVSzJoFkdAqzoxztCzC3V9lChoBmgJaA9DCIjxmld11uS/lIaUUpRoFUsyaBZHQKs8KE12q1h1fZQoaAZoCWgPQwhi1/Z2S3Luv5SGlFKUaBVLMmgWR0CrO+m65Gz9dX2UKGgGaAloD0MINstlo3N+77+UhpRSlGgVSzJoFkdAqzummYSg5HV9lChoBmgJaA9DCDOID+z4r/a/lIaUUpRoFUsyaBZHQKs7Z0HyEtd1fZQoaAZoCWgPQwhXIeUn1T7zv5SGlFKUaBVLMmgWR0CrPVyyMUAUdX2UKGgGaAloD0MI9KeN6nRg+L+UhpRSlGgVSzJoFkdAqz0d/4Irv3V9lChoBmgJaA9DCNQnucMmcvC/lIaUUpRoFUsyaBZHQKs82t/4Irx1fZQoaAZoCWgPQwja44V0eIj1v5SGlFKUaBVLMmgWR0CrPJufNA1OdX2UKGgGaAloD0MIradWX11V9L+UhpRSlGgVSzJoFkdAqz7M3++/QHV9lChoBmgJaA9DCLQEGQEVjuu/lIaUUpRoFUsyaBZHQKs+jg8bJfZ1fZQoaAZoCWgPQwjWrDO+L67vv5SGlFKUaBVLMmgWR0CrPkrsByS3dX2UKGgGaAloD0MIMe2b+6vH7r+UhpRSlGgVSzJoFkdAqz4LuKGcnXV9lChoBmgJaA9DCJgxBWucjfS/lIaUUpRoFUsyaBZHQKs//B/qgRN1fZQoaAZoCWgPQwjnGfuSjUfzv5SGlFKUaBVLMmgWR0CrP72ZAprldX2UKGgGaAloD0MIXyf1ZWkn7L+UhpRSlGgVSzJoFkdAqz97muDBdnV9lChoBmgJaA9DCOdvQiECDuy/lIaUUpRoFUsyaBZHQKs/PU+cH4Z1fZQoaAZoCWgPQwhhURGnk2zyv5SGlFKUaBVLMmgWR0CrQfXueBhAdX2UKGgGaAloD0MImPxP/u7d8L+UhpRSlGgVSzJoFkdAq0G4JZ4fOnV9lChoBmgJaA9DCHVY4ZaPJPS/lIaUUpRoFUsyaBZHQKtBdehwl0J1fZQoaAZoCWgPQwiBmIQLeYT3v5SGlFKUaBVLMmgWR0CrQTeDe0ojdX2UKGgGaAloD0MIM1Naf0sA77+UhpRSlGgVSzJoFkdAq0PewA2hqXV9lChoBmgJaA9DCKuzWmCPSfS/lIaUUpRoFUsyaBZHQKtDoSxJNCZ1fZQoaAZoCWgPQwgLfEW3XtPuv5SGlFKUaBVLMmgWR0CrQ162F36idX2UKGgGaAloD0MIFlCop49A7r+UhpRSlGgVSzJoFkdAq0MgbS7XhHV9lChoBmgJaA9DCAu3fCQlPeq/lIaUUpRoFUsyaBZHQKtF8NFz+3p1fZQoaAZoCWgPQwiWXMXiNwXuv5SGlFKUaBVLMmgWR0CrRbMsQNCrdX2UKGgGaAloD0MII/d0dcci8b+UhpRSlGgVSzJoFkdAq0Vyb2Dg63V9lChoBmgJaA9DCB3MJsCwPPK/lIaUUpRoFUsyaBZHQKtFNFsHjZN1fZQoaAZoCWgPQwg6r7FLVG/0v5SGlFKUaBVLMmgWR0CrSB/NA1NydX2UKGgGaAloD0MIxqS/l8LD8r+UhpRSlGgVSzJoFkdAq0fiKWLP2XV9lChoBmgJaA9DCF/ObFfow/G/lIaUUpRoFUsyaBZHQKtHoBGQSzx1fZQoaAZoCWgPQwgmbhXEQFf6v5SGlFKUaBVLMmgWR0CrR2HVG0/odX2UKGgGaAloD0MI746M1eZ/8r+UhpRSlGgVSzJoFkdAq0pK00FbFHV9lChoBmgJaA9DCBPulXmrbvu/lIaUUpRoFUsyaBZHQKtKDR0EHMV1fZQoaAZoCWgPQwhmiGNd3Ib4v5SGlFKUaBVLMmgWR0CrScruhK15dX2UKGgGaAloD0MI5Lz/jxMm8r+UhpRSlGgVSzJoFkdAq0mMgMc6vXV9lChoBmgJaA9DCH1Z2qm5XPm/lIaUUpRoFUsyaBZHQKtMHomG/N91fZQoaAZoCWgPQwhXl1MCYhLvv5SGlFKUaBVLMmgWR0CrS9/5ULlWdX2UKGgGaAloD0MIvhJIiV0b9b+UhpRSlGgVSzJoFkdAq0uc2WIGhXV9lChoBmgJaA9DCEM4ZtmTgPW/lIaUUpRoFUsyaBZHQKtLXZGKAJ91fZQoaAZoCWgPQwg2OuenOE7zv5SGlFKUaBVLMmgWR0CrTVAyEcsEdX2UKGgGaAloD0MIa7kzEwyHAMCUhpRSlGgVSzJoFkdAq00Ri5NGmXV9lChoBmgJaA9DCHmSdM3kG/G/lIaUUpRoFUsyaBZHQKtMzlum78N1fZQoaAZoCWgPQwgB+n3/5sX7v5SGlFKUaBVLMmgWR0CrTI8J2MbWdX2UKGgGaAloD0MIkGtDxTj//r+UhpRSlGgVSzJoFkdAq06CgRK6F3V9lChoBmgJaA9DCGK/J9apcvq/lIaUUpRoFUsyaBZHQKtOQ/r0J4V1fZQoaAZoCWgPQwgTZW8p58v1v5SGlFKUaBVLMmgWR0CrTgDh99c9dX2UKGgGaAloD0MIVWmLa3xm8b+UhpRSlGgVSzJoFkdAq03BqfvnbXV9lChoBmgJaA9DCMoyxLEuLgHAlIaUUpRoFUsyaBZHQKtPyEmplz51fZQoaAZoCWgPQwiNfcnGg23yv5SGlFKUaBVLMmgWR0CrT4mq5sj3dX2UKGgGaAloD0MIwXPv4ZIj8L+UhpRSlGgVSzJoFkdAq09Gnl4keXV9lChoBmgJaA9DCNnsSPWdH/C/lIaUUpRoFUsyaBZHQKtPBzRx95R1fZQoaAZoCWgPQwhYchWL31Twv5SGlFKUaBVLMmgWR0CrUQE9+w1SdX2UKGgGaAloD0MIYmpLHeQ1+r+UhpRSlGgVSzJoFkdAq1DCiKziTHV9lChoBmgJaA9DCBzO/GoOkPq/lIaUUpRoFUsyaBZHQKtQf3C9AX51fZQoaAZoCWgPQwjaAdcVM8Lyv5SGlFKUaBVLMmgWR0CrUEAuZkTYdX2UKGgGaAloD0MINnhflQvV87+UhpRSlGgVSzJoFkdAq1I3iDM/yHV9lChoBmgJaA9DCM4ZUdobvPm/lIaUUpRoFUsyaBZHQKtR+POIInl1fZQoaAZoCWgPQwghAg6hSo3zv5SGlFKUaBVLMmgWR0CrUbXIEKVqdX2UKGgGaAloD0MIflcE/1tJAcCUhpRSlGgVSzJoFkdAq1F2eHzpYHV9lChoBmgJaA9DCLIS86yk1fW/lIaUUpRoFUsyaBZHQKtTfkuHvc91fZQoaAZoCWgPQwi1p+Sc2MP7v5SGlFKUaBVLMmgWR0CrUz/RNRFadX2UKGgGaAloD0MIUU60q5ASBMCUhpRSlGgVSzJoFkdAq1L8tyxRmHV9lChoBmgJaA9DCLzMsFHWzwDAlIaUUpRoFUsyaBZHQKtSvXhfjS51fZQoaAZoCWgPQwgnLscrEP3wv5SGlFKUaBVLMmgWR0CrVLYS6DoRdX2UKGgGaAloD0MINKFJYkm5+7+UhpRSlGgVSzJoFkdAq1R4YWLxZ3V9lChoBmgJaA9DCMA8ZMqHIPm/lIaUUpRoFUsyaBZHQKtUNhybQTp1fZQoaAZoCWgPQwgwgsZMot7xv5SGlFKUaBVLMmgWR0CrU/hCdBjXdX2UKGgGaAloD0MIkWPrGcKx+r+UhpRSlGgVSzJoFkdAq1Xp88cMmXV9lChoBmgJaA9DCPZdEfxvJe6/lIaUUpRoFUsyaBZHQKtVq0sOG0x1fZQoaAZoCWgPQwi6+UZ0z7r1v5SGlFKUaBVLMmgWR0CrVWgKnei0dX2UKGgGaAloD0MIm6kQj8QrAsCUhpRSlGgVSzJoFkdAq1Uoob4rSXV9lChoBmgJaA9DCGXCL/XzJgrAlIaUUpRoFUsyaBZHQKtXH+dbxEx1fZQoaAZoCWgPQwi8lLpkHKPvv5SGlFKUaBVLMmgWR0CrVuH752yLdX2UKGgGaAloD0MIdAmH3uKh97+UhpRSlGgVSzJoFkdAq1afoq0+knV9lChoBmgJaA9DCERq2sU0k/a/lIaUUpRoFUsyaBZHQKtWYSCe2/l1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56aa34345495cc01c0c9697f31dedd41fa46610a361da75ed6fdd7a971c32563
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b0d7268668bded0829589a9f35c38c894ee03e3c393ae70f1d3820331cab2a6
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9710a44040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9710a426c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679353641113622656, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAABnmoPtoSnr05rQA/BnmoPtoSnr05rQA/BnmoPtoSnr05rQA/BnmoPtoSnr05rQA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI2NKP3JLCb98yB4/ez2Zv1Ukjz9xjdU/G+Opv7lcnL8Ex1y++D67v0kWDr44q+G+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAGeag+2hKevTmtAD8wCeM8ubz7uzGYwDwGeag+2hKevTmtAD8wCeM8ubz7uzGYwDwGeag+2hKevTmtAD8wCeM8ubz7uzGYwDwGeag+2hKevTmtAD8wCeM8ubz7uzGYwDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.32904834 -0.07718439 0.50264317]\n [ 0.32904834 -0.07718439 0.50264317]\n [ 0.32904834 -0.07718439 0.50264317]\n [ 0.32904834 -0.07718439 0.50264317]]", "desired_goal": "[[ 0.7905752 -0.53630745 0.62024665]\n [-1.1971887 1.1182963 1.668379 ]\n [-1.3272432 -1.2215797 -0.21560293]\n [-1.4628592 -0.13875689 -0.44075942]]", "observation": "[[ 0.32904834 -0.07718439 0.50264317 0.02771434 -0.00768241 0.02351007]\n [ 0.32904834 -0.07718439 0.50264317 0.02771434 -0.00768241 0.02351007]\n [ 0.32904834 -0.07718439 0.50264317 0.02771434 -0.00768241 0.02351007]\n [ 0.32904834 -0.07718439 0.50264317 0.02771434 -0.00768241 0.02351007]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPffqvKllwL0/ZU0+BbHFvTbqDr66IrM9wfYlvYZU5r2La00+CD+fPSFprz3i7oY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02868235 -0.0939439 0.20058154]\n [-0.09652904 -0.13956532 0.08746858]\n [-0.04051853 -0.1124659 0.20060556]\n [ 0.07775694 0.08564974 0.26354128]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBRVVv9L54r+UhpRSlIwBbJRLMowBdJRHQKs0s2aUiY91fZQoaAZoCWgPQwhiE5m5wOXov5SGlFKUaBVLMmgWR0CrNHTC1qnFdX2UKGgGaAloD0MI7s7abRea8L+UhpRSlGgVSzJoFkdAqzQxk9U0enV9lChoBmgJaA9DCKURM/s8xuy/lIaUUpRoFUsyaBZHQKsz8mD15B11fZQoaAZoCWgPQwhvDAHAsef3v5SGlFKUaBVLMmgWR0CrNebR4QjEdX2UKGgGaAloD0MI0UGXcOit7L+UhpRSlGgVSzJoFkdAqzWoMfA9FHV9lChoBmgJaA9DCKMdN/xuuuO/lIaUUpRoFUsyaBZHQKs1ZS3solV1fZQoaAZoCWgPQwiNJhdjYJ3ov5SGlFKUaBVLMmgWR0CrNSYMvyskdX2UKGgGaAloD0MI5L9AECDD67+UhpRSlGgVSzJoFkdAqzcWuoxYaHV9lChoBmgJaA9DCKkwthDkIO6/lIaUUpRoFUsyaBZHQKs22Cwr1/V1fZQoaAZoCWgPQwjfh4OEKN/jv5SGlFKUaBVLMmgWR0CrNpUN8VpLdX2UKGgGaAloD0MIsMivH2KD77+UhpRSlGgVSzJoFkdAqzZVloUSI3V9lChoBmgJaA9DCM+fNqrTge2/lIaUUpRoFUsyaBZHQKs4Q5AhStN1fZQoaAZoCWgPQwgVjiCVYof2v5SGlFKUaBVLMmgWR0CrOATZpSJkdX2UKGgGaAloD0MIy2Wjc36K87+UhpRSlGgVSzJoFkdAqzfBsuWa+nV9lChoBmgJaA9DCAra5PBJJ+i/lIaUUpRoFUsyaBZHQKs3goESuhd1fZQoaAZoCWgPQwj8NsR4zSviv5SGlFKUaBVLMmgWR0CrOYGUOd5IdX2UKGgGaAloD0MITRJLyt3n6L+UhpRSlGgVSzJoFkdAqzlDBZZB9nV9lChoBmgJaA9DCEuS5/o+HOy/lIaUUpRoFUsyaBZHQKs5AANoak11fZQoaAZoCWgPQwiEZWzoZn/qv5SGlFKUaBVLMmgWR0CrOMDMV1wHdX2UKGgGaAloD0MIRnu8kA4P8b+UhpRSlGgVSzJoFkdAqzrxakhzNnV9lChoBmgJaA9DCENU4c/wZvK/lIaUUpRoFUsyaBZHQKs6s+2VmjF1fZQoaAZoCWgPQwia0CSxpFzzv5SGlFKUaBVLMmgWR0CrOnD/lyR0dX2UKGgGaAloD0MIY2Adxw+V5r+UhpRSlGgVSzJoFkdAqzoxztCzC3V9lChoBmgJaA9DCIjxmld11uS/lIaUUpRoFUsyaBZHQKs8KE12q1h1fZQoaAZoCWgPQwhi1/Z2S3Luv5SGlFKUaBVLMmgWR0CrO+m65Gz9dX2UKGgGaAloD0MINstlo3N+77+UhpRSlGgVSzJoFkdAqzummYSg5HV9lChoBmgJaA9DCDOID+z4r/a/lIaUUpRoFUsyaBZHQKs7Z0HyEtd1fZQoaAZoCWgPQwhXIeUn1T7zv5SGlFKUaBVLMmgWR0CrPVyyMUAUdX2UKGgGaAloD0MI9KeN6nRg+L+UhpRSlGgVSzJoFkdAqz0d/4Irv3V9lChoBmgJaA9DCNQnucMmcvC/lIaUUpRoFUsyaBZHQKs82t/4Irx1fZQoaAZoCWgPQwja44V0eIj1v5SGlFKUaBVLMmgWR0CrPJufNA1OdX2UKGgGaAloD0MIradWX11V9L+UhpRSlGgVSzJoFkdAqz7M3++/QHV9lChoBmgJaA9DCLQEGQEVjuu/lIaUUpRoFUsyaBZHQKs+jg8bJfZ1fZQoaAZoCWgPQwjWrDO+L67vv5SGlFKUaBVLMmgWR0CrPkrsByS3dX2UKGgGaAloD0MIMe2b+6vH7r+UhpRSlGgVSzJoFkdAqz4LuKGcnXV9lChoBmgJaA9DCJgxBWucjfS/lIaUUpRoFUsyaBZHQKs//B/qgRN1fZQoaAZoCWgPQwjnGfuSjUfzv5SGlFKUaBVLMmgWR0CrP72ZAprldX2UKGgGaAloD0MIXyf1ZWkn7L+UhpRSlGgVSzJoFkdAqz97muDBdnV9lChoBmgJaA9DCOdvQiECDuy/lIaUUpRoFUsyaBZHQKs/PU+cH4Z1fZQoaAZoCWgPQwhhURGnk2zyv5SGlFKUaBVLMmgWR0CrQfXueBhAdX2UKGgGaAloD0MImPxP/u7d8L+UhpRSlGgVSzJoFkdAq0G4JZ4fOnV9lChoBmgJaA9DCHVY4ZaPJPS/lIaUUpRoFUsyaBZHQKtBdehwl0J1fZQoaAZoCWgPQwiBmIQLeYT3v5SGlFKUaBVLMmgWR0CrQTeDe0ojdX2UKGgGaAloD0MIM1Naf0sA77+UhpRSlGgVSzJoFkdAq0PewA2hqXV9lChoBmgJaA9DCKuzWmCPSfS/lIaUUpRoFUsyaBZHQKtDoSxJNCZ1fZQoaAZoCWgPQwgLfEW3XtPuv5SGlFKUaBVLMmgWR0CrQ162F36idX2UKGgGaAloD0MIFlCop49A7r+UhpRSlGgVSzJoFkdAq0MgbS7XhHV9lChoBmgJaA9DCAu3fCQlPeq/lIaUUpRoFUsyaBZHQKtF8NFz+3p1fZQoaAZoCWgPQwiWXMXiNwXuv5SGlFKUaBVLMmgWR0CrRbMsQNCrdX2UKGgGaAloD0MII/d0dcci8b+UhpRSlGgVSzJoFkdAq0Vyb2Dg63V9lChoBmgJaA9DCB3MJsCwPPK/lIaUUpRoFUsyaBZHQKtFNFsHjZN1fZQoaAZoCWgPQwg6r7FLVG/0v5SGlFKUaBVLMmgWR0CrSB/NA1NydX2UKGgGaAloD0MIxqS/l8LD8r+UhpRSlGgVSzJoFkdAq0fiKWLP2XV9lChoBmgJaA9DCF/ObFfow/G/lIaUUpRoFUsyaBZHQKtHoBGQSzx1fZQoaAZoCWgPQwgmbhXEQFf6v5SGlFKUaBVLMmgWR0CrR2HVG0/odX2UKGgGaAloD0MI746M1eZ/8r+UhpRSlGgVSzJoFkdAq0pK00FbFHV9lChoBmgJaA9DCBPulXmrbvu/lIaUUpRoFUsyaBZHQKtKDR0EHMV1fZQoaAZoCWgPQwhmiGNd3Ib4v5SGlFKUaBVLMmgWR0CrScruhK15dX2UKGgGaAloD0MI5Lz/jxMm8r+UhpRSlGgVSzJoFkdAq0mMgMc6vXV9lChoBmgJaA9DCH1Z2qm5XPm/lIaUUpRoFUsyaBZHQKtMHomG/N91fZQoaAZoCWgPQwhXl1MCYhLvv5SGlFKUaBVLMmgWR0CrS9/5ULlWdX2UKGgGaAloD0MIvhJIiV0b9b+UhpRSlGgVSzJoFkdAq0uc2WIGhXV9lChoBmgJaA9DCEM4ZtmTgPW/lIaUUpRoFUsyaBZHQKtLXZGKAJ91fZQoaAZoCWgPQwg2OuenOE7zv5SGlFKUaBVLMmgWR0CrTVAyEcsEdX2UKGgGaAloD0MIa7kzEwyHAMCUhpRSlGgVSzJoFkdAq00Ri5NGmXV9lChoBmgJaA9DCHmSdM3kG/G/lIaUUpRoFUsyaBZHQKtMzlum78N1fZQoaAZoCWgPQwgB+n3/5sX7v5SGlFKUaBVLMmgWR0CrTI8J2MbWdX2UKGgGaAloD0MIkGtDxTj//r+UhpRSlGgVSzJoFkdAq06CgRK6F3V9lChoBmgJaA9DCGK/J9apcvq/lIaUUpRoFUsyaBZHQKtOQ/r0J4V1fZQoaAZoCWgPQwgTZW8p58v1v5SGlFKUaBVLMmgWR0CrTgDh99c9dX2UKGgGaAloD0MIVWmLa3xm8b+UhpRSlGgVSzJoFkdAq03BqfvnbXV9lChoBmgJaA9DCMoyxLEuLgHAlIaUUpRoFUsyaBZHQKtPyEmplz51fZQoaAZoCWgPQwiNfcnGg23yv5SGlFKUaBVLMmgWR0CrT4mq5sj3dX2UKGgGaAloD0MIwXPv4ZIj8L+UhpRSlGgVSzJoFkdAq09Gnl4keXV9lChoBmgJaA9DCNnsSPWdH/C/lIaUUpRoFUsyaBZHQKtPBzRx95R1fZQoaAZoCWgPQwhYchWL31Twv5SGlFKUaBVLMmgWR0CrUQE9+w1SdX2UKGgGaAloD0MIYmpLHeQ1+r+UhpRSlGgVSzJoFkdAq1DCiKziTHV9lChoBmgJaA9DCBzO/GoOkPq/lIaUUpRoFUsyaBZHQKtQf3C9AX51fZQoaAZoCWgPQwjaAdcVM8Lyv5SGlFKUaBVLMmgWR0CrUEAuZkTYdX2UKGgGaAloD0MINnhflQvV87+UhpRSlGgVSzJoFkdAq1I3iDM/yHV9lChoBmgJaA9DCM4ZUdobvPm/lIaUUpRoFUsyaBZHQKtR+POIInl1fZQoaAZoCWgPQwghAg6hSo3zv5SGlFKUaBVLMmgWR0CrUbXIEKVqdX2UKGgGaAloD0MIflcE/1tJAcCUhpRSlGgVSzJoFkdAq1F2eHzpYHV9lChoBmgJaA9DCLIS86yk1fW/lIaUUpRoFUsyaBZHQKtTfkuHvc91fZQoaAZoCWgPQwi1p+Sc2MP7v5SGlFKUaBVLMmgWR0CrUz/RNRFadX2UKGgGaAloD0MIUU60q5ASBMCUhpRSlGgVSzJoFkdAq1L8tyxRmHV9lChoBmgJaA9DCLzMsFHWzwDAlIaUUpRoFUsyaBZHQKtSvXhfjS51fZQoaAZoCWgPQwgnLscrEP3wv5SGlFKUaBVLMmgWR0CrVLYS6DoRdX2UKGgGaAloD0MINKFJYkm5+7+UhpRSlGgVSzJoFkdAq1R4YWLxZ3V9lChoBmgJaA9DCMA8ZMqHIPm/lIaUUpRoFUsyaBZHQKtUNhybQTp1fZQoaAZoCWgPQwgwgsZMot7xv5SGlFKUaBVLMmgWR0CrU/hCdBjXdX2UKGgGaAloD0MIkWPrGcKx+r+UhpRSlGgVSzJoFkdAq1Xp88cMmXV9lChoBmgJaA9DCPZdEfxvJe6/lIaUUpRoFUsyaBZHQKtVq0sOG0x1fZQoaAZoCWgPQwi6+UZ0z7r1v5SGlFKUaBVLMmgWR0CrVWgKnei0dX2UKGgGaAloD0MIm6kQj8QrAsCUhpRSlGgVSzJoFkdAq1Uoob4rSXV9lChoBmgJaA9DCGXCL/XzJgrAlIaUUpRoFUsyaBZHQKtXH+dbxEx1fZQoaAZoCWgPQwi8lLpkHKPvv5SGlFKUaBVLMmgWR0CrVuH752yLdX2UKGgGaAloD0MIdAmH3uKh97+UhpRSlGgVSzJoFkdAq1afoq0+knV9lChoBmgJaA9DCERq2sU0k/a/lIaUUpRoFUsyaBZHQKtWYSCe2/l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (401 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.5192153291776775, "std_reward": 0.2612316536723505, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T00:05:44.744495"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:642abf82dea8b232a112ace8d1cda3e222c8db83f135b4ef724938dfd28370ea
3
+ size 3056