nazneen commited on
Commit
9f0f24a
1 Parent(s): 63e8e26

model documentation

Browse files
Files changed (1) hide show
  1. README.md +161 -0
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ tags:
4
+ - bert
5
+ ---
6
+ # Model Card for mBert-relation-extraction-FT
7
+
8
+
9
+ # Model Details
10
+
11
+ ## Model Description
12
+
13
+ More information needed
14
+
15
+ - **Developed by:** Maxim Maklygin
16
+ - **Shared by [Optional]:** Hugging Face
17
+ - **Model type:** Text Classification
18
+ - **Language(s) (NLP):** More information needed
19
+ - **License:** More information needed
20
+ - **Related Models:** bert-base-multilingual-uncased
21
+ - **Parent Model:** BERT
22
+ - **Resources for more information:** More information needed
23
+
24
+
25
+ # Uses
26
+
27
+
28
+ ## Direct Use
29
+
30
+ This model can be used for the task of text classification.
31
+
32
+ ## Downstream Use [Optional]
33
+
34
+ More information needed
35
+
36
+ ## Out-of-Scope Use
37
+
38
+
39
+ The model should not be used to intentionally create hostile or alienating environments for people.
40
+
41
+ # Bias, Risks, and Limitations
42
+
43
+
44
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
45
+
46
+
47
+ ## Recommendations
48
+
49
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
50
+
51
+
52
+ # Training Details
53
+
54
+ ## Training Data
55
+
56
+ vocab_size: 105879
57
+
58
+ ## Training Procedure
59
+
60
+
61
+ ### Preprocessing
62
+
63
+ More information needed
64
+
65
+ ### Speeds, Sizes, Times
66
+ More information needed
67
+
68
+ # Evaluation
69
+
70
+
71
+ ## Testing Data, Factors & Metrics
72
+
73
+ ### Testing Data
74
+
75
+ More information needed
76
+
77
+ ### Factors
78
+
79
+ More information needed
80
+
81
+ ### Metrics
82
+
83
+ More information needed
84
+
85
+ ## Results
86
+
87
+ More information needed
88
+
89
+ # Model Examination
90
+
91
+ More information needed
92
+
93
+ # Environmental Impact
94
+
95
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
96
+
97
+ - **Hardware Type:** More information needed
98
+ - **Hours used:** More information needed
99
+ - **Cloud Provider:** More information needed
100
+ - **Compute Region:** More information needed
101
+ - **Carbon Emitted:** More information needed
102
+
103
+ # Technical Specifications [optional]
104
+
105
+ ## Model Architecture and Objective
106
+
107
+ More information needed
108
+
109
+ ## Compute Infrastructure
110
+
111
+ More information needed
112
+
113
+ ### Hardware
114
+
115
+ More information needed
116
+
117
+ ### Software
118
+
119
+ transformers_version: 4.19.2
120
+
121
+ # Citation
122
+
123
+ **BibTeX:**
124
+
125
+ More information needed
126
+
127
+ **APA:**
128
+
129
+ More information needed
130
+
131
+ # Glossary [optional]
132
+
133
+ More information needed
134
+
135
+ # More Information [optional]
136
+
137
+ More information needed
138
+
139
+ # Model Card Authors [optional]
140
+ Maxim Maklygin in collaboration with Ezi Ozoani and the Hugging Face team
141
+
142
+ # Model Card Contact
143
+
144
+ More information needed
145
+
146
+ # How to Get Started with the Model
147
+
148
+ Use the code below to get started with the model.
149
+
150
+ <details>
151
+ <summary> Click to expand </summary>
152
+
153
+ ```python
154
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
155
+
156
+ tokenizer = AutoTokenizer.from_pretrained("Maklygin/mBert-relation-extraction-FT")
157
+
158
+ model = AutoModelForSequenceClassification.from_pretrained("Maklygin/mBert-relation-extraction-FT")
159
+
160
+ ```
161
+ </details>