|
import torch |
|
import torch.nn as nn |
|
import re |
|
import math |
|
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig |
|
|
|
|
|
def build_vision_tower(): |
|
vision_tower = '/mnt/petrelfs/share_data/dongxiaoyi/share_models/clip_l_336' |
|
return CLIPVisionTower(vision_tower) |
|
|
|
|
|
def build_vision_projector(): |
|
projector_type = 'mlp2x_gelu' |
|
mm_hidden_size = 1024 |
|
hidden_size = 4096 |
|
|
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(mm_hidden_size, hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(hidden_size, hidden_size)) |
|
return nn.Sequential(*modules) |
|
|
|
if projector_type == 'identity': |
|
return IdentityMap() |
|
|
|
raise ValueError(f'Unknown projector type: {projector_type}') |
|
|
|
class IdentityMap(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {"mm_projector_type": 'identity'} |
|
|
|
|
|
class CLIPVisionTower(nn.Module): |
|
def __init__(self, vision_tower): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
self.is_resize_pos = False |
|
|
|
self.vision_tower_name = vision_tower |
|
self.select_layer = -1 |
|
self.select_feature = 'patch' |
|
self.load_model() |
|
|
|
|
|
def load_model(self): |
|
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
def resize_pos(self): |
|
pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight |
|
pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0) |
|
orig_size = 24 |
|
new_size = 16 |
|
|
|
if pos_embed_checkpoint.shape[1] == new_size ** 2 + 1: |
|
self.is_resize_pos = True |
|
else: |
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
num_extra_tokens = 1 |
|
new_num = new_size ** 2 + num_extra_tokens |
|
print("Position interpolate from %dx%d to %dx%d" % |
|
(orig_size, orig_size, new_size, new_size)) |
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, |
|
embedding_size).permute( |
|
0, 3, 1, 2) |
|
pos_tokens = torch.nn.functional.interpolate(pos_tokens, |
|
size=(new_size, |
|
new_size), |
|
mode='bicubic', |
|
align_corners=False) |
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
|
|
new_pos_embed = new_pos_embed.squeeze(0) |
|
|
|
self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(new_num, 1024) |
|
|
|
|
|
|
|
self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(new_pos_embed.to(pos_embed_checkpoint.device).to(pos_embed_checkpoint.dtype)) |
|
self.vision_tower.vision_model.embeddings.position_ids = torch.arange(new_num).expand((1, -1)).to(pos_embed_checkpoint.device) |
|
self.is_resize_pos = True |
|
|
|
def feature_select(self, image_forward_outs): |
|
image_features = image_forward_outs.hidden_states[self.select_layer] |
|
if self.select_feature == 'patch': |
|
image_features = image_features[:, 1:] |
|
elif self.select_feature == 'cls_patch': |
|
image_features = image_features |
|
else: |
|
raise ValueError(f'Unexpected select feature: {self.select_feature}') |
|
return image_features |
|
|
|
def forward(self, images): |
|
if not self.is_loaded: |
|
self.load_model() |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
class PLoRA(nn.Linear): |
|
def __init__(self, |
|
in_features: int, |
|
out_features: int, |
|
bias: bool = True, |
|
device=None, |
|
dtype=None, |
|
lora_r=8, |
|
lora_alpha=16, |
|
lora_dropout=0.05, |
|
lora_len=0, |
|
**kwargs) -> None: |
|
super().__init__(in_features, out_features, bias, device, dtype) |
|
self.lora_r = lora_r |
|
self.lora_alpha = lora_alpha |
|
self.lora_len = lora_len |
|
if lora_dropout > 0.: |
|
self.lora_dropout = nn.Dropout(p=lora_dropout) |
|
else: |
|
self.lora_dropout = lambda x: x |
|
self.lora_scaling = self.lora_alpha / self.lora_r |
|
|
|
self.Plora_A = nn.Linear(in_features, |
|
self.lora_r, |
|
bias=False, |
|
device=device, |
|
dtype=dtype) |
|
self.Plora_B = nn.Linear(self.lora_r, |
|
out_features, |
|
bias=False, |
|
device=device, |
|
dtype=dtype) |
|
|
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
if hasattr(self, 'lora_A'): |
|
|
|
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5)) |
|
nn.init.zeros_(self.lora_B.weight) |
|
|
|
|
|
def forward(self, x, im_mask=None): |
|
res = super().forward(x) |
|
if im_mask is not None: |
|
if torch.sum(im_mask) > 0: |
|
part_x = x[im_mask] |
|
res[im_mask] += self.Plora_B(self.Plora_A( |
|
self.lora_dropout(part_x))) * self.lora_scaling |
|
else: |
|
part_x = x[:, :1] |
|
res[:, :1] += self.Plora_B(self.Plora_A( |
|
self.lora_dropout(part_x))) * 0 |
|
return res |
|
|