|
--- |
|
language: en |
|
tags: [] |
|
datasets: |
|
- XSUM |
|
- Gigaword |
|
metrics: |
|
- Rouge |
|
--- |
|
|
|
# Pegasus XSUM Gigaword |
|
|
|
## Model description |
|
|
|
Pegasus XSUM model finetuned to Gigaword Summarization task, significantly better performance than pegasus gigaword, but still doesn't match model paper performance. |
|
|
|
## Intended uses & limitations |
|
Produces short summaries with the coherence of the XSUM Model |
|
#### How to use |
|
|
|
```python |
|
# You can include sample code which will be formatted |
|
``` |
|
|
|
#### Limitations and bias |
|
|
|
Still has all the biases of any of the abstractive models, but seems a little less prone to hallucination. |
|
## Training data |
|
|
|
Initialized with pegasus-XSUM |
|
|
|
## Training procedure |
|
|
|
Trained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters) |
|
|
|
## Eval results |
|
Evaluated on Gigaword test set (from hugging face using the default parameters) |
|
run_summarization.py --model_name_or_path pegasus-xsum/checkpoint-11500/ --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate |
|
|
|
| Metric | Score | |
|
| ----------- | ----------- | |
|
| eval_rouge1 | 34.1958 | |
|
| eval_rouge2 | 15.4033 | |
|
| eval_rougeL | 31.4488 | |
|
|
|
|
|
run_summarization.py --model_name_or_path google/pegasus-gigaword --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate |
|
|
|
| Metric | Score | |
|
| ----------- | ----------- | |
|
| eval_rouge1 | 20.8111 | |
|
| eval_rouge2 | 8.766 | |
|
| eval_rougeL | 18.4431 | |
|
|
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@inproceedings{..., |
|
year={2020} |
|
} |
|
``` |
|
|