Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
language:
|
3 |
-
-
|
4 |
-
|
5 |
thumbnail:
|
6 |
tags:
|
@@ -9,21 +9,21 @@ tags:
|
|
9 |
-
|
10 |
license:
|
11 |
datasets:
|
12 |
-
-
|
13 |
-
|
14 |
metrics:
|
15 |
-
-
|
16 |
-
|
17 |
---
|
18 |
|
19 |
-
#
|
20 |
|
21 |
## Model description
|
22 |
|
23 |
-
|
24 |
|
25 |
## Intended uses & limitations
|
26 |
-
|
27 |
#### How to use
|
28 |
|
29 |
```python
|
@@ -32,18 +32,21 @@ You can embed local or remote images using `![](...)`
|
|
32 |
|
33 |
#### Limitations and bias
|
34 |
|
35 |
-
|
36 |
-
|
37 |
## Training data
|
38 |
|
39 |
-
|
40 |
-
If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.
|
41 |
|
42 |
## Training procedure
|
43 |
|
44 |
-
|
45 |
|
46 |
## Eval results
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
### BibTeX entry and citation info
|
49 |
|
|
|
1 |
---
|
2 |
language:
|
3 |
+
- English
|
4 |
-
|
5 |
thumbnail:
|
6 |
tags:
|
|
|
9 |
-
|
10 |
license:
|
11 |
datasets:
|
12 |
+
- XSUM, Gigaword
|
13 |
-
|
14 |
metrics:
|
15 |
+
- Rouge
|
16 |
-
|
17 |
---
|
18 |
|
19 |
+
# Pegasus XSUM Gigaword
|
20 |
|
21 |
## Model description
|
22 |
|
23 |
+
Pegasus XSUM model finetuned to Gigaword Summarization task
|
24 |
|
25 |
## Intended uses & limitations
|
26 |
+
Produces short summaries with the coherence of the XSUM Model
|
27 |
#### How to use
|
28 |
|
29 |
```python
|
|
|
32 |
|
33 |
#### Limitations and bias
|
34 |
|
35 |
+
Still has all the biases of any of the abstractive models, but seems a little less prone to hallucination.
|
|
|
36 |
## Training data
|
37 |
|
38 |
+
Initialized with pegasus-XSUM
|
|
|
39 |
|
40 |
## Training procedure
|
41 |
|
42 |
+
Trained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters)
|
43 |
|
44 |
## Eval results
|
45 |
+
Evaluated on Gigaword evaluation set (from hugging face using the default parameters)
|
46 |
+
eval_rouge1 = 47.8218
|
47 |
+
eval_rouge2 = 23.1533
|
48 |
+
eval_rougeL = 44.341
|
49 |
+
eval_rougeLsum = 44.3198
|
50 |
|
51 |
### BibTeX entry and citation info
|
52 |
|