MarcoAland commited on
Commit
b299bcc
1 Parent(s): 4357e7a

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:39836
19
+ - loss:MultipleNegativesRankingLoss
20
+ widget:
21
+ - source_sentence: Seorang pria bertopi biru dan rompi keselamatan oranye berdiri
22
+ di persimpangan sambil memegang bendera.
23
+ sentences:
24
+ - Sekelompok orang menaiki eskalator, banyak dari mereka memegang payung.
25
+ - Seseorang berpakaian agar mudah terlihat.
26
+ - Seorang pria mengenakan topi keras oranye berdiri di persimpangan jalan.
27
+ - source_sentence: Dua anjing saling memandang di luar.
28
+ sentences:
29
+ - Ada dua anjing di luar.
30
+ - Empat anjing saling memandang di dalam.
31
+ - Seorang pria di luar gedung bata merah dengan kereta belanja, sepeda, dan lain-lain.
32
+ - source_sentence: Pria itu berdiri.
33
+ sentences:
34
+ - Seorang pria dan wanita duduk bersama di meja.
35
+ - Orang-orang di pasar petani luar ruangan.
36
+ - Seorang pria di kota di luar gedung berdiri di tangga.
37
+ - source_sentence: Seorang pria sedang tidur.
38
+ sentences:
39
+ - Seorang pria berselimut sedang tertidur di trotoar.
40
+ - Manusia ditutupi spons beraneka warna.
41
+ - Seorang pria tunawisma tertidur di trotoar.
42
+ - source_sentence: Orang-orang ada di luar.
43
+ sentences:
44
+ - Seorang pria berbaju kotak-kotak dan sandal putih sedang tertidur sambil membaca
45
+ koran.
46
+ - Orang-orang berjalan di luar dan mengenakan warna gelap.
47
+ - Sekelompok orang sedang makan di sebuah restoran dengan mural seorang wanita sedang
48
+ berbelanja di belakang mereka.
49
+ model-index:
50
+ - name: SentenceTransformer based on BAAI/bge-m3
51
+ results:
52
+ - task:
53
+ type: triplet
54
+ name: Triplet
55
+ dataset:
56
+ name: model evaluation
57
+ type: model-evaluation
58
+ metrics:
59
+ - type: cosine_accuracy
60
+ value: 0.9636322566071832
61
+ name: Cosine Accuracy
62
+ - type: dot_accuracy
63
+ value: 0.03636774339281681
64
+ name: Dot Accuracy
65
+ - type: manhattan_accuracy
66
+ value: 0.9625028235825616
67
+ name: Manhattan Accuracy
68
+ - type: euclidean_accuracy
69
+ value: 0.9636322566071832
70
+ name: Euclidean Accuracy
71
+ - type: max_accuracy
72
+ value: 0.9636322566071832
73
+ name: Max Accuracy
74
+ ---
75
+
76
+ # SentenceTransformer based on BAAI/bge-m3
77
+
78
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
79
+
80
+ ## Model Details
81
+
82
+ ### Model Description
83
+ - **Model Type:** Sentence Transformer
84
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
85
+ - **Maximum Sequence Length:** 8192 tokens
86
+ - **Output Dimensionality:** 1024 tokens
87
+ - **Similarity Function:** Cosine Similarity
88
+ <!-- - **Training Dataset:** Unknown -->
89
+ <!-- - **Language:** Unknown -->
90
+ <!-- - **License:** Unknown -->
91
+
92
+ ### Model Sources
93
+
94
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
95
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
96
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
97
+
98
+ ### Full Model Architecture
99
+
100
+ ```
101
+ SentenceTransformer(
102
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
103
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
104
+ (2): Normalize()
105
+ )
106
+ ```
107
+
108
+ ## Usage
109
+
110
+ ### Direct Usage (Sentence Transformers)
111
+
112
+ First install the Sentence Transformers library:
113
+
114
+ ```bash
115
+ pip install -U sentence-transformers
116
+ ```
117
+
118
+ Then you can load this model and run inference.
119
+ ```python
120
+ from sentence_transformers import SentenceTransformer
121
+
122
+ # Download from the 🤗 Hub
123
+ model = SentenceTransformer("MarcoAland/Indo-bge-m3")
124
+ # Run inference
125
+ sentences = [
126
+ 'Orang-orang ada di luar.',
127
+ 'Orang-orang berjalan di luar dan mengenakan warna gelap.',
128
+ 'Sekelompok orang sedang makan di sebuah restoran dengan mural seorang wanita sedang berbelanja di belakang mereka.',
129
+ ]
130
+ embeddings = model.encode(sentences)
131
+ print(embeddings.shape)
132
+ # [3, 1024]
133
+
134
+ # Get the similarity scores for the embeddings
135
+ similarities = model.similarity(embeddings, embeddings)
136
+ print(similarities.shape)
137
+ # [3, 3]
138
+ ```
139
+
140
+ <!--
141
+ ### Direct Usage (Transformers)
142
+
143
+ <details><summary>Click to see the direct usage in Transformers</summary>
144
+
145
+ </details>
146
+ -->
147
+
148
+ <!--
149
+ ### Downstream Usage (Sentence Transformers)
150
+
151
+ You can finetune this model on your own dataset.
152
+
153
+ <details><summary>Click to expand</summary>
154
+
155
+ </details>
156
+ -->
157
+
158
+ <!--
159
+ ### Out-of-Scope Use
160
+
161
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
162
+ -->
163
+
164
+ ## Evaluation
165
+
166
+ ### Metrics
167
+
168
+ #### Triplet
169
+ * Dataset: `model-evaluation`
170
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
171
+
172
+ | Metric | Value |
173
+ |:-------------------|:-----------|
174
+ | cosine_accuracy | 0.9636 |
175
+ | dot_accuracy | 0.0364 |
176
+ | manhattan_accuracy | 0.9625 |
177
+ | euclidean_accuracy | 0.9636 |
178
+ | **max_accuracy** | **0.9636** |
179
+
180
+ <!--
181
+ ## Bias, Risks and Limitations
182
+
183
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
184
+ -->
185
+
186
+ <!--
187
+ ### Recommendations
188
+
189
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
190
+ -->
191
+
192
+ ## Training Details
193
+
194
+ ### Training Dataset
195
+
196
+ #### Unnamed Dataset
197
+
198
+
199
+ * Size: 39,836 training samples
200
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
201
+ * Approximate statistics based on the first 1000 samples:
202
+ | | anchor | positive | negative |
203
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
204
+ | type | string | string | string |
205
+ | details | <ul><li>min: 5 tokens</li><li>mean: 9.44 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.41 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.66 tokens</li><li>max: 52 tokens</li></ul> |
206
+ * Samples:
207
+ | anchor | positive | negative |
208
+ |:-------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
209
+ | <code>Seseorang sedang tidur.</code> | <code>Seorang pemuda tidur siang di jendela sebuah bisnis di pinggir jalan.</code> | <code>Seseorang duduk di kursi yang digantung dengan rantai di taman hiburan.</code> |
210
+ | <code>Seekor anjing sedang berlari.</code> | <code>Seekor anjing abu-abu berlari di sepanjang rumput hijau.</code> | <code>Seekor anjing coklat sedang menatap anjing coklat dan putih yang sedang tidur.</code> |
211
+ | <code>Seorang bayi menangis.</code> | <code>Seorang bayi menangis di tempat tidur bayi.</code> | <code>Seorang bayi berbaring telentang dan tersenyum.</code> |
212
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
213
+ ```json
214
+ {
215
+ "scale": 20.0,
216
+ "similarity_fct": "cos_sim"
217
+ }
218
+ ```
219
+
220
+ ### Evaluation Dataset
221
+
222
+ #### Unnamed Dataset
223
+
224
+
225
+ * Size: 4,427 evaluation samples
226
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
227
+ * Approximate statistics based on the first 1000 samples:
228
+ | | anchor | positive | negative |
229
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
230
+ | type | string | string | string |
231
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.41 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.97 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.64 tokens</li><li>max: 42 tokens</li></ul> |
232
+ * Samples:
233
+ | anchor | positive | negative |
234
+ |:-----------------------------------------------|:-----------------------------------------------------------------|:------------------------------------------------------------------------------|
235
+ | <code>Seorang pria sedang tidur.</code> | <code>Seorang pria tidur di rumput di taman.</code> | <code>Seorang pria membaca koran di samping mobil.</code> |
236
+ | <code>Seorang pria sedang membaca buku.</code> | <code>Seorang pria tua duduk di luar sambil membaca buku.</code> | <code>Seorang pria berbaju pelangi berhenti untuk melihat kotak surat.</code> |
237
+ | <code>Anjing coklat melangkah di air.</code> | <code>Anjing coklat berjalan di air saat dia basah kuyup</code> | <code>Anjing coklat sedang tidur di samping air</code> |
238
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
239
+ ```json
240
+ {
241
+ "scale": 20.0,
242
+ "similarity_fct": "cos_sim"
243
+ }
244
+ ```
245
+
246
+ ### Training Hyperparameters
247
+ #### Non-Default Hyperparameters
248
+
249
+ - `eval_strategy`: steps
250
+ - `per_device_train_batch_size`: 4
251
+ - `per_device_eval_batch_size`: 4
252
+ - `max_steps`: 500
253
+ - `warmup_ratio`: 0.1
254
+ - `batch_sampler`: no_duplicates
255
+
256
+ #### All Hyperparameters
257
+ <details><summary>Click to expand</summary>
258
+
259
+ - `overwrite_output_dir`: False
260
+ - `do_predict`: False
261
+ - `eval_strategy`: steps
262
+ - `prediction_loss_only`: True
263
+ - `per_device_train_batch_size`: 4
264
+ - `per_device_eval_batch_size`: 4
265
+ - `per_gpu_train_batch_size`: None
266
+ - `per_gpu_eval_batch_size`: None
267
+ - `gradient_accumulation_steps`: 1
268
+ - `eval_accumulation_steps`: None
269
+ - `learning_rate`: 5e-05
270
+ - `weight_decay`: 0.0
271
+ - `adam_beta1`: 0.9
272
+ - `adam_beta2`: 0.999
273
+ - `adam_epsilon`: 1e-08
274
+ - `max_grad_norm`: 1.0
275
+ - `num_train_epochs`: 3.0
276
+ - `max_steps`: 500
277
+ - `lr_scheduler_type`: linear
278
+ - `lr_scheduler_kwargs`: {}
279
+ - `warmup_ratio`: 0.1
280
+ - `warmup_steps`: 0
281
+ - `log_level`: passive
282
+ - `log_level_replica`: warning
283
+ - `log_on_each_node`: True
284
+ - `logging_nan_inf_filter`: True
285
+ - `save_safetensors`: True
286
+ - `save_on_each_node`: False
287
+ - `save_only_model`: False
288
+ - `restore_callback_states_from_checkpoint`: False
289
+ - `no_cuda`: False
290
+ - `use_cpu`: False
291
+ - `use_mps_device`: False
292
+ - `seed`: 42
293
+ - `data_seed`: None
294
+ - `jit_mode_eval`: False
295
+ - `use_ipex`: False
296
+ - `bf16`: False
297
+ - `fp16`: False
298
+ - `fp16_opt_level`: O1
299
+ - `half_precision_backend`: auto
300
+ - `bf16_full_eval`: False
301
+ - `fp16_full_eval`: False
302
+ - `tf32`: None
303
+ - `local_rank`: 0
304
+ - `ddp_backend`: None
305
+ - `tpu_num_cores`: None
306
+ - `tpu_metrics_debug`: False
307
+ - `debug`: []
308
+ - `dataloader_drop_last`: False
309
+ - `dataloader_num_workers`: 0
310
+ - `dataloader_prefetch_factor`: None
311
+ - `past_index`: -1
312
+ - `disable_tqdm`: False
313
+ - `remove_unused_columns`: True
314
+ - `label_names`: None
315
+ - `load_best_model_at_end`: False
316
+ - `ignore_data_skip`: False
317
+ - `fsdp`: []
318
+ - `fsdp_min_num_params`: 0
319
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
320
+ - `fsdp_transformer_layer_cls_to_wrap`: None
321
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
322
+ - `deepspeed`: None
323
+ - `label_smoothing_factor`: 0.0
324
+ - `optim`: adamw_torch
325
+ - `optim_args`: None
326
+ - `adafactor`: False
327
+ - `group_by_length`: False
328
+ - `length_column_name`: length
329
+ - `ddp_find_unused_parameters`: None
330
+ - `ddp_bucket_cap_mb`: None
331
+ - `ddp_broadcast_buffers`: False
332
+ - `dataloader_pin_memory`: True
333
+ - `dataloader_persistent_workers`: False
334
+ - `skip_memory_metrics`: True
335
+ - `use_legacy_prediction_loop`: False
336
+ - `push_to_hub`: False
337
+ - `resume_from_checkpoint`: None
338
+ - `hub_model_id`: None
339
+ - `hub_strategy`: every_save
340
+ - `hub_private_repo`: False
341
+ - `hub_always_push`: False
342
+ - `gradient_checkpointing`: False
343
+ - `gradient_checkpointing_kwargs`: None
344
+ - `include_inputs_for_metrics`: False
345
+ - `eval_do_concat_batches`: True
346
+ - `fp16_backend`: auto
347
+ - `push_to_hub_model_id`: None
348
+ - `push_to_hub_organization`: None
349
+ - `mp_parameters`:
350
+ - `auto_find_batch_size`: False
351
+ - `full_determinism`: False
352
+ - `torchdynamo`: None
353
+ - `ray_scope`: last
354
+ - `ddp_timeout`: 1800
355
+ - `torch_compile`: False
356
+ - `torch_compile_backend`: None
357
+ - `torch_compile_mode`: None
358
+ - `dispatch_batches`: None
359
+ - `split_batches`: None
360
+ - `include_tokens_per_second`: False
361
+ - `include_num_input_tokens_seen`: False
362
+ - `neftune_noise_alpha`: None
363
+ - `optim_target_modules`: None
364
+ - `batch_eval_metrics`: False
365
+ - `eval_on_start`: False
366
+ - `batch_sampler`: no_duplicates
367
+ - `multi_dataset_batch_sampler`: proportional
368
+
369
+ </details>
370
+
371
+ ### Training Logs
372
+ | Epoch | Step | Training Loss | loss | model-evaluation_max_accuracy |
373
+ |:------:|:----:|:-------------:|:------:|:-----------------------------:|
374
+ | 0.0100 | 100 | 0.7797 | 0.6925 | - |
375
+ | 0.0201 | 200 | 0.6337 | 0.6018 | - |
376
+ | 0.0301 | 300 | 0.6129 | 0.5737 | - |
377
+ | 0.0402 | 400 | 0.5982 | 0.5116 | - |
378
+ | 0.0502 | 500 | 0.5504 | 0.4719 | 0.9636 |
379
+
380
+
381
+ ### Framework Versions
382
+ - Python: 3.10.12
383
+ - Sentence Transformers: 3.0.1
384
+ - Transformers: 4.42.4
385
+ - PyTorch: 2.3.1+cu121
386
+ - Accelerate: 0.32.1
387
+ - Datasets: 2.20.0
388
+ - Tokenizers: 0.19.1
389
+
390
+ ## Citation
391
+
392
+ ### BibTeX
393
+
394
+ #### Sentence Transformers
395
+ ```bibtex
396
+ @inproceedings{reimers-2019-sentence-bert,
397
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
398
+ author = "Reimers, Nils and Gurevych, Iryna",
399
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
400
+ month = "11",
401
+ year = "2019",
402
+ publisher = "Association for Computational Linguistics",
403
+ url = "https://arxiv.org/abs/1908.10084",
404
+ }
405
+ ```
406
+
407
+ #### MultipleNegativesRankingLoss
408
+ ```bibtex
409
+ @misc{henderson2017efficient,
410
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
411
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
412
+ year={2017},
413
+ eprint={1705.00652},
414
+ archivePrefix={arXiv},
415
+ primaryClass={cs.CL}
416
+ }
417
+ ```
418
+
419
+ <!--
420
+ ## Glossary
421
+
422
+ *Clearly define terms in order to be accessible across audiences.*
423
+ -->
424
+
425
+ <!--
426
+ ## Model Card Authors
427
+
428
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
429
+ -->
430
+
431
+ <!--
432
+ ## Model Card Contact
433
+
434
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
435
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a993a5f4a30db10456a9881162a3b8af274573ef7f8c92108dfaa77a3a39079
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }