File size: 2,179 Bytes
657506f 808fcb3 657506f 808fcb3 4e7a35d 657506f 808fcb3 4e7a35d 657506f 4e7a35d 657506f 4e7a35d 657506f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-cry-detector
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8595505617977528
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-cry-detector
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7516
- Accuracy: 0.8596
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 123
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.9888 | 11 | 1.4029 | 0.5843 |
| No log | 1.9775 | 22 | 1.0708 | 0.7022 |
| No log | 2.9663 | 33 | 0.9015 | 0.8090 |
| No log | 3.9551 | 44 | 0.8003 | 0.8427 |
| No log | 4.9438 | 55 | 0.7582 | 0.8483 |
| No log | 5.9326 | 66 | 0.7516 | 0.8596 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
|