Marcos12886 commited on
Commit
c4109a3
1 Parent(s): a348421

End of training

Browse files
Files changed (5) hide show
  1. README.md +81 -80
  2. config.json +80 -80
  3. model.safetensors +1 -1
  4. preprocessor_config.json +9 -9
  5. training_args.bin +1 -1
README.md CHANGED
@@ -1,80 +1,81 @@
1
- ---
2
- license: apache-2.0
3
- base_model: ntu-spml/distilhubert
4
- tags:
5
- - generated_from_trainer
6
- datasets:
7
- - audiofolder
8
- metrics:
9
- - accuracy
10
- model-index:
11
- - name: distilhubert-finetuned-cry-detector
12
- results:
13
- - task:
14
- name: Audio Classification
15
- type: audio-classification
16
- dataset:
17
- name: audiofolder
18
- type: audiofolder
19
- config: default
20
- split: train
21
- args: default
22
- metrics:
23
- - name: Accuracy
24
- type: accuracy
25
- value: 0.9786096256684492
26
- ---
27
-
28
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
- should probably proofread and complete it, then remove this comment. -->
30
-
31
- # distilhubert-finetuned-cry-detector
32
-
33
- This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
34
- It achieves the following results on the evaluation set:
35
- - Loss: 0.0732
36
- - Accuracy: 0.9786
37
-
38
- ## Model description
39
-
40
- More information needed
41
-
42
- ## Intended uses & limitations
43
-
44
- More information needed
45
-
46
- ## Training and evaluation data
47
-
48
- More information needed
49
-
50
- ## Training procedure
51
-
52
- ### Training hyperparameters
53
-
54
- The following hyperparameters were used during training:
55
- - learning_rate: 0.0001
56
- - train_batch_size: 8
57
- - eval_batch_size: 8
58
- - seed: 123
59
- - gradient_accumulation_steps: 8
60
- - total_train_batch_size: 64
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: cosine
63
- - num_epochs: 4
64
-
65
- ### Training results
66
-
67
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
- |:-------------:|:------:|:----:|:---------------:|:--------:|
69
- | No log | 0.9362 | 11 | 0.1831 | 0.9358 |
70
- | No log | 1.9574 | 23 | 0.1361 | 0.9519 |
71
- | No log | 2.9787 | 35 | 0.0748 | 0.9786 |
72
- | No log | 3.7447 | 44 | 0.0732 | 0.9786 |
73
-
74
-
75
- ### Framework versions
76
-
77
- - Transformers 4.42.4
78
- - Pytorch 2.3.1+cu121
79
- - Datasets 2.21.0
80
- - Tokenizers 0.19.1
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: ntu-spml/distilhubert
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - audiofolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: distilhubert-finetuned-cry-detector
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: audiofolder
19
+ type: audiofolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9786096256684492
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # distilhubert-finetuned-cry-detector
33
+
34
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.0748
37
+ - Accuracy: 0.9786
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 0.0001
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 123
60
+ - gradient_accumulation_steps: 8
61
+ - total_train_batch_size: 64
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: cosine
64
+ - num_epochs: 4
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
70
+ | No log | 0.9362 | 11 | 0.1841 | 0.9358 |
71
+ | No log | 1.9574 | 23 | 0.1308 | 0.9519 |
72
+ | No log | 2.9787 | 35 | 0.0763 | 0.9733 |
73
+ | No log | 3.7447 | 44 | 0.0748 | 0.9786 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.44.2
79
+ - Pytorch 2.4.0+cu118
80
+ - Datasets 2.21.0
81
+ - Tokenizers 0.19.1
config.json CHANGED
@@ -1,80 +1,80 @@
1
- {
2
- "_name_or_path": "ntu-spml/distilhubert",
3
- "activation_dropout": 0.1,
4
- "apply_spec_augment": false,
5
- "architectures": [
6
- "HubertForSequenceClassification"
7
- ],
8
- "attention_dropout": 0.1,
9
- "bos_token_id": 1,
10
- "classifier_proj_size": 256,
11
- "conv_bias": false,
12
- "conv_dim": [
13
- 512,
14
- 512,
15
- 512,
16
- 512,
17
- 512,
18
- 512,
19
- 512
20
- ],
21
- "conv_kernel": [
22
- 10,
23
- 3,
24
- 3,
25
- 3,
26
- 3,
27
- 2,
28
- 2
29
- ],
30
- "conv_stride": [
31
- 5,
32
- 2,
33
- 2,
34
- 2,
35
- 2,
36
- 2,
37
- 2
38
- ],
39
- "ctc_loss_reduction": "sum",
40
- "ctc_zero_infinity": false,
41
- "do_stable_layer_norm": false,
42
- "eos_token_id": 2,
43
- "feat_extract_activation": "gelu",
44
- "feat_extract_norm": "group",
45
- "feat_proj_dropout": 0.0,
46
- "feat_proj_layer_norm": false,
47
- "final_dropout": 0.0,
48
- "hidden_act": "gelu",
49
- "hidden_dropout": 0.1,
50
- "hidden_size": 768,
51
- "id2label": {
52
- "0": "crying",
53
- "1": "no_crying"
54
- },
55
- "initializer_range": 0.02,
56
- "intermediate_size": 3072,
57
- "label2id": {
58
- "crying": "0",
59
- "no_crying": "1"
60
- },
61
- "layer_norm_eps": 1e-05,
62
- "layerdrop": 0.0,
63
- "mask_feature_length": 10,
64
- "mask_feature_min_masks": 0,
65
- "mask_feature_prob": 0.0,
66
- "mask_time_length": 10,
67
- "mask_time_min_masks": 2,
68
- "mask_time_prob": 0.05,
69
- "model_type": "hubert",
70
- "num_attention_heads": 12,
71
- "num_conv_pos_embedding_groups": 16,
72
- "num_conv_pos_embeddings": 128,
73
- "num_feat_extract_layers": 7,
74
- "num_hidden_layers": 2,
75
- "pad_token_id": 0,
76
- "torch_dtype": "float32",
77
- "transformers_version": "4.42.4",
78
- "use_weighted_layer_sum": false,
79
- "vocab_size": 32
80
- }
 
1
+ {
2
+ "_name_or_path": "ntu-spml/distilhubert",
3
+ "activation_dropout": 0.1,
4
+ "apply_spec_augment": false,
5
+ "architectures": [
6
+ "HubertForSequenceClassification"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "classifier_proj_size": 256,
11
+ "conv_bias": false,
12
+ "conv_dim": [
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512,
19
+ 512
20
+ ],
21
+ "conv_kernel": [
22
+ 10,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 3,
27
+ 2,
28
+ 2
29
+ ],
30
+ "conv_stride": [
31
+ 5,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2
38
+ ],
39
+ "ctc_loss_reduction": "sum",
40
+ "ctc_zero_infinity": false,
41
+ "do_stable_layer_norm": false,
42
+ "eos_token_id": 2,
43
+ "feat_extract_activation": "gelu",
44
+ "feat_extract_norm": "group",
45
+ "feat_proj_dropout": 0.0,
46
+ "feat_proj_layer_norm": false,
47
+ "final_dropout": 0.0,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.1,
50
+ "hidden_size": 768,
51
+ "id2label": {
52
+ "0": "crying",
53
+ "1": "no_crying"
54
+ },
55
+ "initializer_range": 0.02,
56
+ "intermediate_size": 3072,
57
+ "label2id": {
58
+ "crying": "0",
59
+ "no_crying": "1"
60
+ },
61
+ "layer_norm_eps": 1e-05,
62
+ "layerdrop": 0.0,
63
+ "mask_feature_length": 10,
64
+ "mask_feature_min_masks": 0,
65
+ "mask_feature_prob": 0.0,
66
+ "mask_time_length": 10,
67
+ "mask_time_min_masks": 2,
68
+ "mask_time_prob": 0.05,
69
+ "model_type": "hubert",
70
+ "num_attention_heads": 12,
71
+ "num_conv_pos_embedding_groups": 16,
72
+ "num_conv_pos_embeddings": 128,
73
+ "num_feat_extract_layers": 7,
74
+ "num_hidden_layers": 2,
75
+ "pad_token_id": 0,
76
+ "torch_dtype": "float32",
77
+ "transformers_version": "4.44.2",
78
+ "use_weighted_layer_sum": false,
79
+ "vocab_size": 32
80
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:37fd4a948a69ccbbd999b0b48a7af1b366b82c87b508d35767cdfbf1c2bba96c
3
  size 94763496
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b41a275fde4c9fcebaf0bd9fc5ae54fde8d749a3b2aa19361673f8dc31100514
3
  size 94763496
preprocessor_config.json CHANGED
@@ -1,9 +1,9 @@
1
- {
2
- "do_normalize": false,
3
- "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
- "feature_size": 1,
5
- "padding_side": "right",
6
- "padding_value": 0,
7
- "return_attention_mask": false,
8
- "sampling_rate": 16000
9
- }
 
1
+ {
2
+ "do_normalize": false,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": false,
8
+ "sampling_rate": 16000
9
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dbc895582845e04f7b896e904848b260ab962b034fa8d8a0a3cd0d29f8a8cdc1
3
  size 5176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0cac9757157cce11a947d5910d5b2825a89549ee75602204d2845a5a6764f90
3
  size 5176