--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 - precision - recall model-index: - name: distilhubert-finetuned-cry-detector results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9647577092511013 - name: F1 type: f1 value: 0.9648767292681042 - name: Precision type: precision value: 0.9651623077005758 - name: Recall type: recall value: 0.9647577092511013 --- # distilhubert-finetuned-cry-detector This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1135 - Accuracy: 0.9648 - F1: 0.9649 - Precision: 0.9652 - Recall: 0.9648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 0.9825 | 14 | 0.2255 | 0.9427 | 0.9434 | 0.9459 | 0.9427 | | No log | 1.9649 | 28 | 0.1302 | 0.9559 | 0.9561 | 0.9564 | 0.9559 | | No log | 2.9474 | 42 | 0.1557 | 0.9559 | 0.9552 | 0.9574 | 0.9559 | | No log | 4.0 | 57 | 0.1118 | 0.9559 | 0.9561 | 0.9564 | 0.9559 | | No log | 4.9123 | 70 | 0.1135 | 0.9648 | 0.9649 | 0.9652 | 0.9648 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1