MarkieMark1
commited on
Commit
•
a8ea3c7
1
Parent(s):
9a71357
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1450.36 +/- 87.93
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8d564dd85771806329e2be9117a9632de1d07f725160999eb957617c58a7429
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b090798b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b09079940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b090799d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b09079a60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3b09079af0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3b09079b80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b09079c10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b09079ca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3b09079d30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b09079dc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b09079e50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b09079ee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3b0907aa80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678885976831395042,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFyclD/y4DK/tTKuPdjy7z4qhAXA4nrYPeh20L6xvoG9YAoDP04sAz/nUhM/KYN6vZ5twDyZPAPAb9egvm+3QD5Gure/VhVbv7CK6b5zWEg/z8vnvJB1vz46eAK/lFlwv+MDPT8DUfQ+m6PTPibWW7/hsYk/+CbyvezhBz9Fbe8830KPv0kODD+SVoq/fXKDvZwa7b4bnN4+DXMlP8qIFz6An7i9OX84v+iFsD45E36+xBSYv1+d9L40Zmm/3Zf1Prs3g752EyY+fOiVP6+MWL7jAz0/A1H0Ppuj0z4m1lu/OhRUP1HBZT+R7xg/RgfhP3gZ9b60+IG/MQ/ePZ37u79jwr0/Kt38vg0bsD8xSJG/Si6Ov+c+ST1As/y+MCERv1BHmr+tJaq+ySyVP6G8o71Y5TG/vvyfPrvMe76Lf3G/4wM9PwIfBsCbo9M+JtZbvznG8L4bXQI/KnorP2nGr74c0cE9gXo5PyBf5b7EAyM+Wdelv20TQD7q4IO/yiNOP/hlCL9bswFA6LAOPz2LtLwDsJ4/kcnCP7vI776vlZe+aZmFv+aVmT+cIC8/vX+hPppcrb8DUfQ+m6PTPmQOlT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAeOxK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMegGPgAAAACPrPe/AAAAAIlDGT0AAAAAXob1PwAAAAB7vss7AAAAAAcj9z8AAAAAGbgsPAAAAAAmUAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeaxRNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNXPAj4AAAAAv6T6vwAAAACZeb09AAAAAAuJ4j8AAAAAL9eBvQAAAAD+Xvo/AAAAAF2G070AAAAAfwr4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwhpbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAlcOA9AAAAABz94r8AAAAAqLsLPgAAAACp3+I/AAAAAMD2zTwAAAAASLL1PwAAAADeUZg9AAAAAFEl8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJ3C2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAC1KiPQAAAADIkN6/AAAAANDiXrwAAAAAwCbuPwAAAACCyAg9AAAAAFOi7j8AAAAA4aDAPQAAAADX9OW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSptCzC1qqMAWyUTegDjAF0lEdAsH7uKYRdyHV9lChoBkdAkpi1/pdKNGgHTegDaAhHQLCAL/sVtXR1fZQoaAZHQJMzc9Mbm2doB03oA2gIR0CwgussUZeidX2UKGgGR0CU1TEUj9n9aAdN6ANoCEdAsIOlyJbdJ3V9lChoBkdAkzYvhQ3xWmgHTegDaAhHQLCF10L+glF1fZQoaAZHQJNO008/2TRoB03oA2gIR0CwhqRXbM5fdX2UKGgGR0CS0J9c8kleaAdN6ANoCEdAsIkjgpBomHV9lChoBkdAk6qE1IiC8WgHTegDaAhHQLCJ6EX+ERJ1fZQoaAZHQJKGJpPAO8VoB03oA2gIR0CwjN37cfvGdX2UKGgGR0CUE5FMZgogaAdN6ANoCEdAsI4v420iQnV9lChoBkdAk7DRWtEG7mgHTegDaAhHQLCRe8GcFyJ1fZQoaAZHQJVGbhXKbKBoB03oA2gIR0CwkjjPWxyGdX2UKGgGR0CUm+l3yI56aAdN6ANoCEdAsJRkOtnwonV9lChoBkdAkp8s0pEx7GgHTegDaAhHQLCVMqMFUyZ1fZQoaAZHQJF3x00WM0hoB03oA2gIR0Cwl8UIHC40dX2UKGgGR0CVdgkSVW0aaAdN6ANoCEdAsJiJ1/2Cd3V9lChoBkdAk+P88kleGGgHTegDaAhHQLCa9EPDpC91fZQoaAZHQJH1XVe8f3hoB03oA2gIR0CwnBblq8DkdX2UKGgGR0CTXrUyHmA9aAdN6ANoCEdAsJ/fI4lyBHV9lChoBkdAkcMglKK51GgHTegDaAhHQLCgl8lolD51fZQoaAZHQJKAHjghr31oB03oA2gIR0CwosEBfa6CdX2UKGgGR0CS7Ih7E5yVaAdN6ANoCEdAsKOL0RODa3V9lChoBkdAkp9Hp8neBWgHTegDaAhHQLCmGJ17pmp1fZQoaAZHQJSEmu5jH4poB03oA2gIR0CwptjGxUvPdX2UKGgGR0CS1fhTwUg0aAdN6ANoCEdAsKkHcnE2pHV9lChoBkdAlIuNgrpaBGgHTegDaAhHQLCp+yaNMoN1fZQoaAZHQJIKPollbvBoB03oA2gIR0CwrcQLux8ldX2UKGgGR0CUpBwKjSG8aAdN6ANoCEdAsK7hIre67XV9lChoBkdAlKPMkdFOPGgHTegDaAhHQLCxB1kDp1R1fZQoaAZHQJHrnLA57w9oB03oA2gIR0CwsdX2EkB0dX2UKGgGR0CT+kHpKSPmaAdN6ANoCEdAsLRqguh9LHV9lChoBkdAku50XP7emGgHTegDaAhHQLC1JLrHEMt1fZQoaAZHQJbbWtV7x/doB03oA2gIR0Cwt08JpnHvdX2UKGgGR0CTvq2Yv38GaAdN6ANoCEdAsLgYTPBzm3V9lChoBkdAlQ05/Tb35GgHTegDaAhHQLC7ZOjIq9Z1fZQoaAZHQJZeISQHRkVoB03oA2gIR0CwvIQ0Kqn4dX2UKGgGR0CWqtNyHVPOaAdN6ANoCEdAsL85VR1ox3V9lChoBkdAlRrZg9eQdWgHTegDaAhHQLDACwqy4Wl1fZQoaAZHQJMmQQ04zadoB03oA2gIR0CwwqA7T2FndX2UKGgGR0CUp95oGpuNaAdN6ANoCEdAsMNia2F36nV9lChoBkdAlUAVZDArQWgHTegDaAhHQLDFhBQvYe11fZQoaAZHQJSgfbrTpgVoB03oA2gIR0CwxkwC8vmHdX2UKGgGR0CWoYwPiDNAaAdN6ANoCEdAsMk8r/bTMXV9lChoBkdAlALJeZ5Rj2gHTegDaAhHQLDKSX668QJ1fZQoaAZHQJOrGOZLIxRoB03oA2gIR0CwzXkBOpKjdX2UKGgGR0CYR8avzOHGaAdN6ANoCEdAsM5El+mWMXV9lChoBkdAk/DX4bjtHGgHTegDaAhHQLDQ4rilzlt1fZQoaAZHQJWG/DQ7cO9oB03oA2gIR0Cw0am/SH/MdX2UKGgGR0CS4pc32mHhaAdN6ANoCEdAsNPeb/ffoHV9lChoBkdAkssGC7K7qmgHTegDaAhHQLDUrfrrxAl1fZQoaAZHQJNmGneizs1oB03oA2gIR0Cw1z2MfigkdX2UKGgGR0CVRUivxH5KaAdN6ANoCEdAsNhHCGetjnV9lChoBkdAkyP4n8baRWgHTegDaAhHQLDbfrnTy8V1fZQoaAZHQJVq8YVIqb1oB03oA2gIR0Cw3KrTc6/7dX2UKGgGR0CTKbOq//NraAdN6ANoCEdAsN8+kAPuonV9lChoBkdAlEXVkpZwGWgHTegDaAhHQLDgAR1oxpN1fZQoaAZHQJJP2XpnpStoB03oA2gIR0Cw4i0KiO/+dX2UKGgGR0CUT+3DvVmSaAdN6ANoCEdAsOL88ox59nV9lChoBkdAlCdZ8neBQWgHTegDaAhHQLDlhU5+6RR1fZQoaAZHQJU8eiN83MpoB03oA2gIR0Cw5klNHpbEdX2UKGgGR0CXH07IDHOsaAdN6ANoCEdAsOlHBj4Ho3V9lChoBkdAk6ZWxyGSIWgHTegDaAhHQLDqfT6BRQ91fZQoaAZHQJc0Lq3VkMFoB03oA2gIR0Cw7XCNjslcdX2UKGgGR0CWgx2gWac7aAdN6ANoCEdAsO4sIqsls3V9lChoBkdAlSkmYnfEXWgHTegDaAhHQLDwUJ8fFJh1fZQoaAZHQJZuefXf645oB03oA2gIR0Cw8SE2gnMMdX2UKGgGR0CWyb6NEPUbaAdN6ANoCEdAsPOs12q1gHV9lChoBkdAlZBdmthd+2gHTegDaAhHQLD0ZwM6RyR1fZQoaAZHQJOREJokAxVoB03oA2gIR0Cw9uwjt5UtdX2UKGgGR0CVP0DqW1MNaAdN6ANoCEdAsPgakN4JNXV9lChoBkdAlSr+8TSLImgHTegDaAhHQLD7qhNdqtZ1fZQoaAZHQJVjvgVGkN5oB03oA2gIR0Cw/GbZrYXgdX2UKGgGR0CT713kPtlaaAdN6ANoCEdAsP6NDCxeLXV9lChoBkdAk3bjfNzKcWgHTegDaAhHQLD/XWj45951fZQoaAZHQJSVCNzbN8poB03oA2gIR0CxAfMeGO+7dX2UKGgGR0CUX7doWYWtaAdN6ANoCEdAsQKxAWzninV9lChoBkdAkzLvVy3kP2gHTegDaAhHQLEE3xWT5ft1fZQoaAZHQJS1UWrOqvNoB03oA2gIR0CxBfvjn3cpdX2UKGgGR0CSp56MR6F/aAdN6ANoCEdAsQnYPatcOnV9lChoBkdAmAUMXenAI2gHTegDaAhHQLEKuRVp9JB1fZQoaAZHQJNjBckdFORoB03oA2gIR0CxDO73wkPddX2UKGgGR0CT55ZCv5gxaAdN6ANoCEdAsQ3BI3BHkXV9lChoBkdAk/3ZZntfHGgHTegDaAhHQLEQVE1EVnF1fZQoaAZHQJQ8oL3K0UpoB03oA2gIR0CxERgBT4tZdX2UKGgGR0CU7UIS13MZaAdN6ANoCEdAsRNgGOdXk3V9lChoBkdAlMm8lb/wRWgHTegDaAhHQLEUMYxL0z11fZQoaAZHQJL9yhYeT3ZoB03oA2gIR0CxGAXXVbzLdX2UKGgGR0CWG5+LWI43aAdN6ANoCEdAsRkrRZ2ZA3V9lChoBkdAlqzu9i+cpmgHTegDaAhHQLEbd33Hq/x1fZQoaAZHQJU0Ax20Re1oB03oA2gIR0CxHEfGhmGudX2UKGgGR0CTzXP3i704aAdN6ANoCEdAsR7RblijL3V9lChoBkdAlJEAr+YMOWgHTegDaAhHQLEfjR3eN1h1fZQoaAZHQJKJaDQJHAhoB03oA2gIR0CxIboL5RCQdX2UKGgGR0CVLLFjNIK/aAdN6ANoCEdAsSKMhOgxrXV9lChoBkdAlo9w4ffXPWgHTegDaAhHQLEl0h73PAx1fZQoaAZHQJZ6pwxWT5hoB03oA2gIR0CxJviI55qudX2UKGgGR0CVeTzw+dK/aAdN6ANoCEdAsSm9PznRs3V9lChoBkdAlINCWRigCmgHTegDaAhHQLEqjbp/wy91fZQoaAZHQJTYzKoybhFoB03oA2gIR0CxLSfRiPQwdX2UKGgGR0CU5QmiQDFIaAdN6ANoCEdAsS3mRigCfnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dcf384f7cfe2ef03d876526fcd0cf4d264df504b99b567ecbb5b17f8f4d342d
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89f15defacb4ec3ad8199efb82e4d32877e65360f22e37660e459a4b3c46adee
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b090798b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b09079940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b090799d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b09079a60>", "_build": "<function ActorCriticPolicy._build at 0x7f3b09079af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b09079b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b09079c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b09079ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b09079d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b09079dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b09079e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b09079ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b0907aa80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678885976831395042, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFyclD/y4DK/tTKuPdjy7z4qhAXA4nrYPeh20L6xvoG9YAoDP04sAz/nUhM/KYN6vZ5twDyZPAPAb9egvm+3QD5Gure/VhVbv7CK6b5zWEg/z8vnvJB1vz46eAK/lFlwv+MDPT8DUfQ+m6PTPibWW7/hsYk/+CbyvezhBz9Fbe8830KPv0kODD+SVoq/fXKDvZwa7b4bnN4+DXMlP8qIFz6An7i9OX84v+iFsD45E36+xBSYv1+d9L40Zmm/3Zf1Prs3g752EyY+fOiVP6+MWL7jAz0/A1H0Ppuj0z4m1lu/OhRUP1HBZT+R7xg/RgfhP3gZ9b60+IG/MQ/ePZ37u79jwr0/Kt38vg0bsD8xSJG/Si6Ov+c+ST1As/y+MCERv1BHmr+tJaq+ySyVP6G8o71Y5TG/vvyfPrvMe76Lf3G/4wM9PwIfBsCbo9M+JtZbvznG8L4bXQI/KnorP2nGr74c0cE9gXo5PyBf5b7EAyM+Wdelv20TQD7q4IO/yiNOP/hlCL9bswFA6LAOPz2LtLwDsJ4/kcnCP7vI776vlZe+aZmFv+aVmT+cIC8/vX+hPppcrb8DUfQ+m6PTPmQOlT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAeOxK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMegGPgAAAACPrPe/AAAAAIlDGT0AAAAAXob1PwAAAAB7vss7AAAAAAcj9z8AAAAAGbgsPAAAAAAmUAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeaxRNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNXPAj4AAAAAv6T6vwAAAACZeb09AAAAAAuJ4j8AAAAAL9eBvQAAAAD+Xvo/AAAAAF2G070AAAAAfwr4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwhpbQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAlcOA9AAAAABz94r8AAAAAqLsLPgAAAACp3+I/AAAAAMD2zTwAAAAASLL1PwAAAADeUZg9AAAAAFEl8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKJ3C2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAC1KiPQAAAADIkN6/AAAAANDiXrwAAAAAwCbuPwAAAACCyAg9AAAAAFOi7j8AAAAA4aDAPQAAAADX9OW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJSptCzC1qqMAWyUTegDjAF0lEdAsH7uKYRdyHV9lChoBkdAkpi1/pdKNGgHTegDaAhHQLCAL/sVtXR1fZQoaAZHQJMzc9Mbm2doB03oA2gIR0CwgussUZeidX2UKGgGR0CU1TEUj9n9aAdN6ANoCEdAsIOlyJbdJ3V9lChoBkdAkzYvhQ3xWmgHTegDaAhHQLCF10L+glF1fZQoaAZHQJNO008/2TRoB03oA2gIR0CwhqRXbM5fdX2UKGgGR0CS0J9c8kleaAdN6ANoCEdAsIkjgpBomHV9lChoBkdAk6qE1IiC8WgHTegDaAhHQLCJ6EX+ERJ1fZQoaAZHQJKGJpPAO8VoB03oA2gIR0CwjN37cfvGdX2UKGgGR0CUE5FMZgogaAdN6ANoCEdAsI4v420iQnV9lChoBkdAk7DRWtEG7mgHTegDaAhHQLCRe8GcFyJ1fZQoaAZHQJVGbhXKbKBoB03oA2gIR0CwkjjPWxyGdX2UKGgGR0CUm+l3yI56aAdN6ANoCEdAsJRkOtnwonV9lChoBkdAkp8s0pEx7GgHTegDaAhHQLCVMqMFUyZ1fZQoaAZHQJF3x00WM0hoB03oA2gIR0Cwl8UIHC40dX2UKGgGR0CVdgkSVW0aaAdN6ANoCEdAsJiJ1/2Cd3V9lChoBkdAk+P88kleGGgHTegDaAhHQLCa9EPDpC91fZQoaAZHQJH1XVe8f3hoB03oA2gIR0CwnBblq8DkdX2UKGgGR0CTXrUyHmA9aAdN6ANoCEdAsJ/fI4lyBHV9lChoBkdAkcMglKK51GgHTegDaAhHQLCgl8lolD51fZQoaAZHQJKAHjghr31oB03oA2gIR0CwosEBfa6CdX2UKGgGR0CS7Ih7E5yVaAdN6ANoCEdAsKOL0RODa3V9lChoBkdAkp9Hp8neBWgHTegDaAhHQLCmGJ17pmp1fZQoaAZHQJSEmu5jH4poB03oA2gIR0CwptjGxUvPdX2UKGgGR0CS1fhTwUg0aAdN6ANoCEdAsKkHcnE2pHV9lChoBkdAlIuNgrpaBGgHTegDaAhHQLCp+yaNMoN1fZQoaAZHQJIKPollbvBoB03oA2gIR0CwrcQLux8ldX2UKGgGR0CUpBwKjSG8aAdN6ANoCEdAsK7hIre67XV9lChoBkdAlKPMkdFOPGgHTegDaAhHQLCxB1kDp1R1fZQoaAZHQJHrnLA57w9oB03oA2gIR0CwsdX2EkB0dX2UKGgGR0CT+kHpKSPmaAdN6ANoCEdAsLRqguh9LHV9lChoBkdAku50XP7emGgHTegDaAhHQLC1JLrHEMt1fZQoaAZHQJbbWtV7x/doB03oA2gIR0Cwt08JpnHvdX2UKGgGR0CTvq2Yv38GaAdN6ANoCEdAsLgYTPBzm3V9lChoBkdAlQ05/Tb35GgHTegDaAhHQLC7ZOjIq9Z1fZQoaAZHQJZeISQHRkVoB03oA2gIR0CwvIQ0Kqn4dX2UKGgGR0CWqtNyHVPOaAdN6ANoCEdAsL85VR1ox3V9lChoBkdAlRrZg9eQdWgHTegDaAhHQLDACwqy4Wl1fZQoaAZHQJMmQQ04zadoB03oA2gIR0CwwqA7T2FndX2UKGgGR0CUp95oGpuNaAdN6ANoCEdAsMNia2F36nV9lChoBkdAlUAVZDArQWgHTegDaAhHQLDFhBQvYe11fZQoaAZHQJSgfbrTpgVoB03oA2gIR0CwxkwC8vmHdX2UKGgGR0CWoYwPiDNAaAdN6ANoCEdAsMk8r/bTMXV9lChoBkdAlALJeZ5Rj2gHTegDaAhHQLDKSX668QJ1fZQoaAZHQJOrGOZLIxRoB03oA2gIR0CwzXkBOpKjdX2UKGgGR0CYR8avzOHGaAdN6ANoCEdAsM5El+mWMXV9lChoBkdAk/DX4bjtHGgHTegDaAhHQLDQ4rilzlt1fZQoaAZHQJWG/DQ7cO9oB03oA2gIR0Cw0am/SH/MdX2UKGgGR0CS4pc32mHhaAdN6ANoCEdAsNPeb/ffoHV9lChoBkdAkssGC7K7qmgHTegDaAhHQLDUrfrrxAl1fZQoaAZHQJNmGneizs1oB03oA2gIR0Cw1z2MfigkdX2UKGgGR0CVRUivxH5KaAdN6ANoCEdAsNhHCGetjnV9lChoBkdAkyP4n8baRWgHTegDaAhHQLDbfrnTy8V1fZQoaAZHQJVq8YVIqb1oB03oA2gIR0Cw3KrTc6/7dX2UKGgGR0CTKbOq//NraAdN6ANoCEdAsN8+kAPuonV9lChoBkdAlEXVkpZwGWgHTegDaAhHQLDgAR1oxpN1fZQoaAZHQJJP2XpnpStoB03oA2gIR0Cw4i0KiO/+dX2UKGgGR0CUT+3DvVmSaAdN6ANoCEdAsOL88ox59nV9lChoBkdAlCdZ8neBQWgHTegDaAhHQLDlhU5+6RR1fZQoaAZHQJU8eiN83MpoB03oA2gIR0Cw5klNHpbEdX2UKGgGR0CXH07IDHOsaAdN6ANoCEdAsOlHBj4Ho3V9lChoBkdAk6ZWxyGSIWgHTegDaAhHQLDqfT6BRQ91fZQoaAZHQJc0Lq3VkMFoB03oA2gIR0Cw7XCNjslcdX2UKGgGR0CWgx2gWac7aAdN6ANoCEdAsO4sIqsls3V9lChoBkdAlSkmYnfEXWgHTegDaAhHQLDwUJ8fFJh1fZQoaAZHQJZuefXf645oB03oA2gIR0Cw8SE2gnMMdX2UKGgGR0CWyb6NEPUbaAdN6ANoCEdAsPOs12q1gHV9lChoBkdAlZBdmthd+2gHTegDaAhHQLD0ZwM6RyR1fZQoaAZHQJOREJokAxVoB03oA2gIR0Cw9uwjt5UtdX2UKGgGR0CVP0DqW1MNaAdN6ANoCEdAsPgakN4JNXV9lChoBkdAlSr+8TSLImgHTegDaAhHQLD7qhNdqtZ1fZQoaAZHQJVjvgVGkN5oB03oA2gIR0Cw/GbZrYXgdX2UKGgGR0CT713kPtlaaAdN6ANoCEdAsP6NDCxeLXV9lChoBkdAk3bjfNzKcWgHTegDaAhHQLD/XWj45951fZQoaAZHQJSVCNzbN8poB03oA2gIR0CxAfMeGO+7dX2UKGgGR0CUX7doWYWtaAdN6ANoCEdAsQKxAWzninV9lChoBkdAkzLvVy3kP2gHTegDaAhHQLEE3xWT5ft1fZQoaAZHQJS1UWrOqvNoB03oA2gIR0CxBfvjn3cpdX2UKGgGR0CSp56MR6F/aAdN6ANoCEdAsQnYPatcOnV9lChoBkdAmAUMXenAI2gHTegDaAhHQLEKuRVp9JB1fZQoaAZHQJNjBckdFORoB03oA2gIR0CxDO73wkPddX2UKGgGR0CT55ZCv5gxaAdN6ANoCEdAsQ3BI3BHkXV9lChoBkdAk/3ZZntfHGgHTegDaAhHQLEQVE1EVnF1fZQoaAZHQJQ8oL3K0UpoB03oA2gIR0CxERgBT4tZdX2UKGgGR0CU7UIS13MZaAdN6ANoCEdAsRNgGOdXk3V9lChoBkdAlMm8lb/wRWgHTegDaAhHQLEUMYxL0z11fZQoaAZHQJL9yhYeT3ZoB03oA2gIR0CxGAXXVbzLdX2UKGgGR0CWG5+LWI43aAdN6ANoCEdAsRkrRZ2ZA3V9lChoBkdAlqzu9i+cpmgHTegDaAhHQLEbd33Hq/x1fZQoaAZHQJU0Ax20Re1oB03oA2gIR0CxHEfGhmGudX2UKGgGR0CTzXP3i704aAdN6ANoCEdAsR7RblijL3V9lChoBkdAlJEAr+YMOWgHTegDaAhHQLEfjR3eN1h1fZQoaAZHQJKJaDQJHAhoB03oA2gIR0CxIboL5RCQdX2UKGgGR0CVLLFjNIK/aAdN6ANoCEdAsSKMhOgxrXV9lChoBkdAlo9w4ffXPWgHTegDaAhHQLEl0h73PAx1fZQoaAZHQJZ6pwxWT5hoB03oA2gIR0CxJviI55qudX2UKGgGR0CVeTzw+dK/aAdN6ANoCEdAsSm9PznRs3V9lChoBkdAlINCWRigCmgHTegDaAhHQLEqjbp/wy91fZQoaAZHQJTYzKoybhFoB03oA2gIR0CxLSfRiPQwdX2UKGgGR0CU5QmiQDFIaAdN6ANoCEdAsS3mRigCfnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86cb598d474a167b98b6082e092420bdc3eb7d89517be1a7889488f6d3d34127
|
3 |
+
size 1102849
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1450.356029234, "std_reward": 87.92792973491147, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T14:13:17.965485"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:598fc8d822403399d3ad969c3f938e6b08cb66a7a64a63762a86f1d958578031
|
3 |
+
size 2136
|