Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,66 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- clip
|
|
|
|
|
|
|
4 |
library_name: open_clip
|
5 |
pipeline_tag: zero-shot-image-classification
|
6 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- clip
|
4 |
+
- e-commerce
|
5 |
+
- fashion
|
6 |
+
- multimodal retrieval
|
7 |
library_name: open_clip
|
8 |
pipeline_tag: zero-shot-image-classification
|
9 |
+
license: apache-2.0
|
10 |
+
datasets:
|
11 |
+
- Marqo/atlas
|
12 |
+
- Marqo/deepfashion-inshop
|
13 |
+
- Marqo/deepfashion-multimodal
|
14 |
+
- Marqo/fashion200k
|
15 |
+
- Marqo/iMaterialist
|
16 |
+
- Marqo/KAGL
|
17 |
+
- Marqo/polyvore
|
18 |
+
language:
|
19 |
+
- en
|
20 |
+
metrics:
|
21 |
+
- precision
|
22 |
+
- recall
|
23 |
+
- MRR
|
24 |
---
|
25 |
+
# Marqo FashionCLIP Model Card
|
26 |
+
Marqo-FashionCLIP leverages Generalised Contrastive Learning ([GCL](https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking)) which allows the model to be trained on not just text descriptions but also categories, style, colors, materials, keywords and fine-details to provide highly relevant search results on fashion products.
|
27 |
+
The model was fine-tuned from ViT-B-16 (laion2b_s34b_b88k).
|
28 |
+
|
29 |
+
**Github Page**: [Marqo-FashionCLIP](https://github.com/marqo-ai/marqo-FashionCLIP)
|
30 |
+
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
The model can be seamlessly used with [OpenCLIP](https://github.com/mlfoundations/open_clip) by
|
34 |
+
|
35 |
+
```python
|
36 |
+
import open_clip
|
37 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionCLIP')
|
38 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionCLIP')
|
39 |
+
```
|
40 |
+
|
41 |
+
## Benchmark Results
|
42 |
+
Average evaluation results on 6 public multimodal fashion datasets ([Atlas](https://huggingface.co/datasets/Marqo/atlas), [DeepFashion (In-shop)](https://huggingface.co/datasets/Marqo/deepfashion-inshop), [DeepFashion (Multimodal)](https://huggingface.co/datasets/Marqo/deepfashion-multimodal), [Fashion200k](https://huggingface.co/datasets/Marqo/fashion200k), [KAGL](https://huggingface.co/datasets/Marqo/KAGL), and [Polyvore](https://huggingface.co/datasets/Marqo/polyvore)) are reported below:
|
43 |
+
|
44 |
+
**Text-To-Image (Averaged across 6 datasets)**
|
45 |
+
| Model | AvgRecall | Recall@1 | Recall@10 | MRR |
|
46 |
+
|----------------------------|-------------|------------|-------------|-----------|
|
47 |
+
| FashionCLIP2.0 | 0.163 | 0.077 | 0.249 | 0.165 |
|
48 |
+
| Marqo-FashionCLIP | **0.192** | **0.094** | **0.290** | **0.200** |
|
49 |
+
| OpenFashionCLIP | 0.132 | 0.060 | 0.204 | 0.135 |
|
50 |
+
| ViT-B-16-laion2b_s34b_b88k | 0.174 | 0.088 | 0.261 | 0.180 |
|
51 |
+
|
52 |
+
**Category-To-Product (Averaged across 5 datasets)**
|
53 |
+
| Model | AvgP | P@1 | P@10 | MRR |
|
54 |
+
|----------------------------|-----------|-----------|-----------|-----------|
|
55 |
+
| FashionCLIP2.0 | 0.684 | 0.681 | **0.686** | 0.741 |
|
56 |
+
| Marqo-FashionCLIP | **0.705** | **0.734** | 0.676 | **0.776** |
|
57 |
+
| OpenFashionCLIP | 0.646 | 0.653 | 0.639 | 0.720 |
|
58 |
+
| ViT-B-16-laion2b_s34b_b88k | 0.662 | 0.673 | 0.652 | 0.743 |
|
59 |
+
|
60 |
+
**Sub-Category-To-Product (Averaged across 4 datasets)**
|
61 |
+
| Model | AvgP | P@1 | P@10 | MRR |
|
62 |
+
|----------------------------|-----------|-----------|-----------|-----------|
|
63 |
+
| FashionCLIP2.0 | 0.657 | 0.676 | 0.638 | 0.733 |
|
64 |
+
| Marqo-FashionCLIP | **0.707** | **0.747** | **0.667** | **0.772** |
|
65 |
+
| OpenFashionCLIP | 0.598 | 0.619 | 0.578 | 0.689 |
|
66 |
+
| ViT-B-16-laion2b_s34b_b88k | 0.638 | 0.651 | 0.624 | 0.712 |
|