File size: 10,678 Bytes
782eaf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
from open_clip import create_model
from transformers import PretrainedConfig, PreTrainedModel
from transformers.models.siglip.modeling_siglip import SiglipOutput
from typing import Optional, Tuple, Union, List
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
import string
import ftfy
import html

def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()

def canonicalize_text(
    text,
    *,
    keep_punctuation_exact_string=None,
    trans_punctuation: dict = str.maketrans("", "", string.punctuation),
):
    """Returns canonicalized `text` (lowercase and punctuation removed).

    From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94

    Args:
      text: string to be canonicalized.
      keep_punctuation_exact_string: If provided, then this exact string kept.
        For example providing '{}' will keep any occurrences of '{}' (but will
        still remove '{' and '}' that appear separately).
    """
    text = text.replace("_", " ")
    if keep_punctuation_exact_string:
        text = keep_punctuation_exact_string.join(
            part.translate(trans_punctuation)
            for part in text.split(keep_punctuation_exact_string)
        )
    else:
        text = text.translate(trans_punctuation)
    text = text.lower()
    text = " ".join(text.split())
    return text.strip()

def _clean_canonicalize(x):
    # basic, remove whitespace, remove punctuation, lower case
    return canonicalize_text(basic_clean(x))

class MarqoFashionSigLIPConfig(PretrainedConfig):
    def __init__(
        self,
        open_clip_model_name: str = "",
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.open_clip_model_name = open_clip_model_name
        
class MarqoFashionSigLIPProcessor(ProcessorMixin):
    r"""
    Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.

    [`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
    [`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.

    Args:
        image_processor ([`SiglipImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`T5TokenizerFast`]):
            The tokenizer is a required input.
    """

    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "SiglipImageProcessor"
    tokenizer_class = "T5TokenizerFast"

    def __init__(self, image_processor, tokenizer):
        super().__init__(image_processor, tokenizer)

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        images: ImageInput = None,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: int = None,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` argument to
        SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """

        if text is None and images is None:
            raise ValueError("You have to specify either text or images. Both cannot be none.")

        if text is not None:
            if isinstance(text, str):
                text = [text]
            text = [_clean_canonicalize(raw_text) for raw_text in text]
            encoding = self.tokenizer(
                text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
            )

        if images is not None:
            try:
                images = [image.convert('RGB') for image in images] if isinstance(images, list) else images.convert('RGB')
            except:
                images = images
            image_features = self.image_processor(images, return_tensors=return_tensors)

        if text is not None and images is not None:
            encoding["pixel_values"] = image_features.pixel_values
            return encoding
        elif text is not None:
            return encoding
        else:
            return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
        
class MarqoFashionSigLIP(PreTrainedModel):
    config_class = MarqoFashionSigLIPConfig

    def __init__(self, config: MarqoFashionSigLIPConfig):
        super().__init__(config)
        self.config = config
        self.model = create_model(config.open_clip_model_name, output_dict=True)
        self.model.eval()
        self.model.to(self.device)
        
    def get_image_features(
        self, 
        pixel_values: torch.FloatTensor, 
        normalize: bool = False,
        **kwargs
        ) -> torch.FloatTensor:
        
        with torch.inference_mode():
            image_features = self.model.encode_image(pixel_values, normalize=normalize)
        return image_features
    
    def get_text_features(
        self,
        input_ids: torch.Tensor,
        normalize: bool = False,
        **kwargs
    ) -> torch.FloatTensor:
        
        with torch.inference_mode():
            text_features = self.model.encode_text(input_ids, normalize=normalize)
        return text_features
        
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SiglipOutput]:

        vision_outputs = self.get_image_features(pixel_values=pixel_values, normalize=True)
        text_outputs = self.get_text_features(input_ids=input_ids, normalize=True)

        logits_per_text = text_outputs @ vision_outputs.T
        logits_per_image = logits_per_text.T

        if not return_dict:
            return logits_per_image, logits_per_text, text_outputs, vision_outputs

        return SiglipOutput(
            logits_per_image=logits_per_image,
            logits_per_text=logits_per_text,
            text_embeds=text_outputs,
            image_embeds=vision_outputs
        )