--- library_name: transformers tags: [] --- # araelectra-base-discriminator-89540-pretrain # Quran Passage Retrieval Model This is a **fine-tuned model** on Arabic passage retrieval datasets, used for **Quran QA 2023 Task A**. ## Model Description This model was fine-tuned to perform text classification on an Arabic dataset. The task involves identifying relevant passages from the Quran in response to specific questions, focusing on retrieval quality. - **Base model**: Pretrained transformer-based model (e.g., AraBERT, CAMeLBERT, AraELECTRA). - **Task**: Passage retrieval (text classification). - **Dataset**: Fine-tuned on the Quran QA 2023 dataset. ## Intended Use - **Language**: Arabic - **Task**: Passage retrieval for Quran QA - **Usage**: Use this model for ranking and retrieving relevant passages from a corpus of Arabic text, primarily for question answering tasks. ## Evaluation Results - reported in the paper ## How to Use ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mohammed-elkomy/quran-qa") tokenizer = AutoTokenizer.from_pretrained("mohammed-elkomy/quran-qa") inputs = tokenizer("Your input text", return_tensors="pt") outputs = model(**inputs) ## Citation If you use this model, please cite the following: ``` @inproceedings{elkomy2023quran, title={TCE at Qur’an QA 2023 Shared Task: Low Resource Enhanced Transformer-based Ensemble Approach for Qur’anic QA}, author={Mohammed ElKomy and Amany Sarhan}, year={2023}, url={https://github.com/mohammed-elkomy/quran-qa/}, } ``` ``` @inproceedings{elkomy2022quran, title={TCE at Qur'an QA 2022: Arabic Language Question Answering Over Holy Qur'an Using a Post-Processed Ensemble of BERT-based Models}, author={Mohammed ElKomy and Amany Sarhan}, year={2022}, url={https://github.com/mohammed-elkomy/quran-qa/}, } ```