Upload tune.py with huggingface_hub
Browse files
tune.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Follow https://blog.ovhcloud.com/fine-tuning-llama-2-models-using-a-single-gpu-qlora-and-ai-notebooks/
|
2 |
+
|
3 |
+
# Connect to a compute node interactively
|
4 |
+
# srun --partition=gpu-interactive --gpus=a5000:1 --mem=16000 --pty /bin/bash
|
5 |
+
# source env/hugh/bin/activate
|
6 |
+
# cd /share/compling/speech/llama_tuning
|
7 |
+
|
8 |
+
# On first exectution
|
9 |
+
# Downloading and preparing dataset json/databricks--databricks-dolly-15k ...
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import bitsandbytes as bnb
|
13 |
+
from datasets import load_dataset
|
14 |
+
from functools import partial
|
15 |
+
import os
|
16 |
+
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, AutoPeftModelForCausalLM
|
17 |
+
import torch
|
18 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed, Trainer, TrainingArguments, BitsAndBytesConfig, \
|
19 |
+
DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
20 |
+
from datasets import load_dataset
|
21 |
+
|
22 |
+
def load_model(model_name, bnb_config):
|
23 |
+
n_gpus = torch.cuda.device_count()
|
24 |
+
max_memory = f'{40960}MB'
|
25 |
+
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
model_name,
|
28 |
+
quantization_config=bnb_config,
|
29 |
+
device_map="auto", # dispatch efficiently the model on the available ressources
|
30 |
+
max_memory = {i: max_memory for i in range(n_gpus)},
|
31 |
+
)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
|
33 |
+
|
34 |
+
# Needed for LLaMA tokenizer
|
35 |
+
tokenizer.pad_token = tokenizer.eos_token
|
36 |
+
|
37 |
+
return model, tokenizer
|
38 |
+
|
39 |
+
# Load the databricks dataset from Hugging Face
|
40 |
+
from datasets import load_dataset
|
41 |
+
|
42 |
+
dataset = load_dataset("databricks/databricks-dolly-15k", split="train")
|
43 |
+
|
44 |
+
print(f'Number of prompts: {len(dataset)}')
|
45 |
+
print(f'Column names are: {dataset.column_names}')
|
46 |
+
|
47 |
+
# Output
|
48 |
+
# Number of prompts: 15011
|
49 |
+
# Column names are: ['instruction', 'context', 'response', 'category']
|
50 |
+
|
51 |
+
## Pre-processing the dataset
|
52 |
+
def create_prompt_formats(sample):
|
53 |
+
"""
|
54 |
+
Format various fields of the sample ('instruction', 'context', 'response')
|
55 |
+
Then concatenate them using two newline characters
|
56 |
+
:param sample: Sample dictionnary
|
57 |
+
"""
|
58 |
+
|
59 |
+
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
60 |
+
INSTRUCTION_KEY = "### Instruction:"
|
61 |
+
INPUT_KEY = "Input:"
|
62 |
+
RESPONSE_KEY = "### Response:"
|
63 |
+
END_KEY = "### End"
|
64 |
+
|
65 |
+
blurb = f"{INTRO_BLURB}"
|
66 |
+
instruction = f"{INSTRUCTION_KEY}\n{sample['instruction']}"
|
67 |
+
input_context = f"{INPUT_KEY}\n{sample['context']}" if sample["context"] else None
|
68 |
+
response = f"{RESPONSE_KEY}\n{sample['response']}"
|
69 |
+
end = f"{END_KEY}"
|
70 |
+
|
71 |
+
parts = [part for part in [blurb, instruction, input_context, response, end] if part]
|
72 |
+
|
73 |
+
formatted_prompt = "\n\n".join(parts)
|
74 |
+
|
75 |
+
sample["text"] = formatted_prompt
|
76 |
+
|
77 |
+
return sample
|
78 |
+
|
79 |
+
|
80 |
+
# SOURCE https://github.com/databrickslabs/dolly/blob/master/training/trainer.py
|
81 |
+
def get_max_length(model):
|
82 |
+
conf = model.config
|
83 |
+
max_length = None
|
84 |
+
for length_setting in ["n_positions", "max_position_embeddings", "seq_length"]:
|
85 |
+
max_length = getattr(model.config, length_setting, None)
|
86 |
+
if max_length:
|
87 |
+
print(f"Found max lenth: {max_length}")
|
88 |
+
break
|
89 |
+
if not max_length:
|
90 |
+
max_length = 1024
|
91 |
+
print(f"Using default max length: {max_length}")
|
92 |
+
return max_length
|
93 |
+
|
94 |
+
|
95 |
+
def preprocess_batch(batch, tokenizer, max_length):
|
96 |
+
"""
|
97 |
+
Tokenizing a batch
|
98 |
+
"""
|
99 |
+
return tokenizer(
|
100 |
+
batch["text"],
|
101 |
+
max_length=max_length,
|
102 |
+
truncation=True,
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
# SOURCE https://github.com/databrickslabs/dolly/blob/master/training/trainer.py
|
107 |
+
def preprocess_dataset(tokenizer: AutoTokenizer, max_length: int, seed, dataset: str):
|
108 |
+
"""Format & tokenize it so it is ready for training
|
109 |
+
:param tokenizer (AutoTokenizer): Model Tokenizer
|
110 |
+
:param max_length (int): Maximum number of tokens to emit from tokenizer
|
111 |
+
"""
|
112 |
+
|
113 |
+
# Add prompt to each sample
|
114 |
+
print("Preprocessing dataset...")
|
115 |
+
dataset = dataset.map(create_prompt_formats)#, batched=True)
|
116 |
+
|
117 |
+
# Apply preprocessing to each batch of the dataset & and remove 'instruction', 'context', 'response', 'category' fields
|
118 |
+
_preprocessing_function = partial(preprocess_batch, max_length=max_length, tokenizer=tokenizer)
|
119 |
+
dataset = dataset.map(
|
120 |
+
_preprocessing_function,
|
121 |
+
batched=True,
|
122 |
+
remove_columns=["instruction", "context", "response", "text", "category"],
|
123 |
+
)
|
124 |
+
|
125 |
+
# Filter out samples that have input_ids exceeding max_length
|
126 |
+
dataset = dataset.filter(lambda sample: len(sample["input_ids"]) < max_length)
|
127 |
+
|
128 |
+
# Shuffle dataset
|
129 |
+
dataset = dataset.shuffle(seed=seed)
|
130 |
+
|
131 |
+
return dataset
|
132 |
+
|
133 |
+
## Create a bitsandbytes configuration
|
134 |
+
def create_bnb_config():
|
135 |
+
bnb_config = BitsAndBytesConfig(
|
136 |
+
load_in_4bit=True,
|
137 |
+
bnb_4bit_use_double_quant=True,
|
138 |
+
bnb_4bit_quant_type="nf4",
|
139 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
140 |
+
)
|
141 |
+
|
142 |
+
return bnb_config
|
143 |
+
|
144 |
+
def create_peft_config(modules):
|
145 |
+
"""
|
146 |
+
Create Parameter-Efficient Fine-Tuning config for your model
|
147 |
+
:param modules: Names of the modules to apply Lora to
|
148 |
+
"""
|
149 |
+
config = LoraConfig(
|
150 |
+
r=16, # dimension of the updated matrices
|
151 |
+
lora_alpha=64, # parameter for scaling
|
152 |
+
target_modules=modules,
|
153 |
+
lora_dropout=0.1, # dropout probability for layers
|
154 |
+
bias="none",
|
155 |
+
task_type="CAUSAL_LM",
|
156 |
+
)
|
157 |
+
|
158 |
+
return config
|
159 |
+
|
160 |
+
# SOURCE https://github.com/artidoro/qlora/blob/main/qlora.py
|
161 |
+
|
162 |
+
def find_all_linear_names(model):
|
163 |
+
cls = bnb.nn.Linear4bit #if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear)
|
164 |
+
lora_module_names = set()
|
165 |
+
for name, module in model.named_modules():
|
166 |
+
if isinstance(module, cls):
|
167 |
+
names = name.split('.')
|
168 |
+
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
169 |
+
|
170 |
+
if 'lm_head' in lora_module_names: # needed for 16-bit
|
171 |
+
lora_module_names.remove('lm_head')
|
172 |
+
return list(lora_module_names)
|
173 |
+
|
174 |
+
def print_trainable_parameters(model, use_4bit=False):
|
175 |
+
"""
|
176 |
+
Prints the number of trainable parameters in the model.
|
177 |
+
"""
|
178 |
+
trainable_params = 0
|
179 |
+
all_param = 0
|
180 |
+
for _, param in model.named_parameters():
|
181 |
+
num_params = param.numel()
|
182 |
+
# if using DS Zero 3 and the weights are initialized empty
|
183 |
+
if num_params == 0 and hasattr(param, "ds_numel"):
|
184 |
+
num_params = param.ds_numel
|
185 |
+
|
186 |
+
all_param += num_params
|
187 |
+
if param.requires_grad:
|
188 |
+
trainable_params += num_params
|
189 |
+
if use_4bit:
|
190 |
+
trainable_params /= 2
|
191 |
+
print(
|
192 |
+
f"all params: {all_param:,d} || trainable params: {trainable_params:,d} || trainable%: {100 * trainable_params / all_param}"
|
193 |
+
)
|
194 |
+
|
195 |
+
# Load model from HF with user's token and with bitsandbytes config
|
196 |
+
|
197 |
+
model_name = "meta-llama/Llama-2-7b-hf"
|
198 |
+
|
199 |
+
bnb_config = create_bnb_config()
|
200 |
+
|
201 |
+
model, tokenizer = load_model(model_name, bnb_config)
|
202 |
+
|
203 |
+
print(model)
|
204 |
+
|
205 |
+
## Preprocess dataset
|
206 |
+
|
207 |
+
max_length = get_max_length(model)
|
208 |
+
|
209 |
+
print(max_length)
|
210 |
+
|
211 |
+
# The seed seems to be missing in https://blog.ovhcloud.com/fine-tuning-llama-2-models-using-a-single-gpu-qlora-and-ai-notebooks/
|
212 |
+
# It is supposed to be an int, make one up.
|
213 |
+
seed = 98345
|
214 |
+
|
215 |
+
dataset = preprocess_dataset(tokenizer, max_length, seed, dataset)
|
216 |
+
|
217 |
+
|
218 |
+
def train(model, tokenizer, dataset, output_dir):
|
219 |
+
# Apply preprocessing to the model to prepare it by
|
220 |
+
# 1 - Enabling gradient checkpointing to reduce memory usage during fine-tuning
|
221 |
+
model.gradient_checkpointing_enable()
|
222 |
+
|
223 |
+
# 2 - Using the prepare_model_for_kbit_training method from PEFT
|
224 |
+
model = prepare_model_for_kbit_training(model)
|
225 |
+
|
226 |
+
# Get lora module names
|
227 |
+
modules = find_all_linear_names(model)
|
228 |
+
|
229 |
+
# Create PEFT config for these modules and wrap the model to PEFT
|
230 |
+
peft_config = create_peft_config(modules)
|
231 |
+
model = get_peft_model(model, peft_config)
|
232 |
+
|
233 |
+
# Print information about the percentage of trainable parameters
|
234 |
+
print_trainable_parameters(model)
|
235 |
+
|
236 |
+
# Training parameters
|
237 |
+
trainer = Trainer(
|
238 |
+
model=model,
|
239 |
+
train_dataset=dataset,
|
240 |
+
args=TrainingArguments(
|
241 |
+
per_device_train_batch_size=1,
|
242 |
+
gradient_accumulation_steps=4,
|
243 |
+
warmup_steps=2,
|
244 |
+
max_steps=20,
|
245 |
+
learning_rate=2e-4,
|
246 |
+
fp16=True,
|
247 |
+
logging_steps=1,
|
248 |
+
output_dir="outputs",
|
249 |
+
optim="paged_adamw_8bit",
|
250 |
+
),
|
251 |
+
data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False)
|
252 |
+
)
|
253 |
+
|
254 |
+
model.config.use_cache = False # re-enable for inference to speed up predictions for similar inputs
|
255 |
+
|
256 |
+
### SOURCE https://github.com/artidoro/qlora/blob/main/qlora.py
|
257 |
+
# Verifying the datatypes before training
|
258 |
+
|
259 |
+
dtypes = {}
|
260 |
+
for _, p in model.named_parameters():
|
261 |
+
dtype = p.dtype
|
262 |
+
if dtype not in dtypes: dtypes[dtype] = 0
|
263 |
+
dtypes[dtype] += p.numel()
|
264 |
+
total = 0
|
265 |
+
for k, v in dtypes.items(): total+= v
|
266 |
+
for k, v in dtypes.items():
|
267 |
+
print(k, v, v/total)
|
268 |
+
|
269 |
+
do_train = True
|
270 |
+
|
271 |
+
# Launch training
|
272 |
+
print("Training...")
|
273 |
+
|
274 |
+
if do_train:
|
275 |
+
train_result = trainer.train()
|
276 |
+
metrics = train_result.metrics
|
277 |
+
trainer.log_metrics("train", metrics)
|
278 |
+
trainer.save_metrics("train", metrics)
|
279 |
+
trainer.save_state()
|
280 |
+
print(metrics)
|
281 |
+
|
282 |
+
###
|
283 |
+
|
284 |
+
# Saving model
|
285 |
+
print("Saving last checkpoint of the model...")
|
286 |
+
os.makedirs(output_dir, exist_ok=True)
|
287 |
+
trainer.model.save_pretrained(output_dir)
|
288 |
+
|
289 |
+
# Free memory for merging weights
|
290 |
+
del model
|
291 |
+
del trainer
|
292 |
+
torch.cuda.empty_cache()
|
293 |
+
|
294 |
+
output_dir = "results/llama2/final_checkpoint"
|
295 |
+
|
296 |
+
# Run train!
|
297 |
+
print("Run train ...")
|
298 |
+
train(model, tokenizer, dataset, output_dir)
|
299 |
+
|
300 |
+
|
301 |
+
# Merge weights and save the merged checkpoint
|
302 |
+
model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map="auto", torch_dtype=torch.bfloat16)
|
303 |
+
model = model.merge_and_unload()
|
304 |
+
|
305 |
+
output_merged_dir = "results/llama2/final_merged_checkpoint"
|
306 |
+
os.makedirs(output_merged_dir, exist_ok=True)
|
307 |
+
model.save_pretrained(output_merged_dir, safe_serialization=True)
|
308 |
+
|
309 |
+
# save tokenizer for easy inference
|
310 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
311 |
+
tokenizer.save_pretrained(output_merged_dir)
|
312 |
+
|