|
--- |
|
license: mit |
|
base_model: microsoft/layoutlm-base-uncased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: layoutlm-funsd-tf |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlm-funsd-tf |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.2473 |
|
- Validation Loss: 0.6721 |
|
- Train Overall Precision: 0.7140 |
|
- Train Overall Recall: 0.8043 |
|
- Train Overall F1: 0.7565 |
|
- Train Overall Accuracy: 0.8076 |
|
- Epoch: 7 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch | |
|
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:| |
|
| 1.7381 | 1.4132 | 0.2537 | 0.2935 | 0.2722 | 0.5348 | 0 | |
|
| 1.2080 | 0.9561 | 0.5655 | 0.5981 | 0.5813 | 0.7060 | 1 | |
|
| 0.8008 | 0.7159 | 0.6477 | 0.7371 | 0.6895 | 0.7727 | 2 | |
|
| 0.6021 | 0.6365 | 0.6928 | 0.7772 | 0.7326 | 0.7984 | 3 | |
|
| 0.4729 | 0.6242 | 0.6833 | 0.7923 | 0.7337 | 0.8067 | 4 | |
|
| 0.3818 | 0.6040 | 0.7164 | 0.7832 | 0.7483 | 0.8131 | 5 | |
|
| 0.3024 | 0.6533 | 0.7177 | 0.8048 | 0.7588 | 0.8074 | 6 | |
|
| 0.2473 | 0.6721 | 0.7140 | 0.8043 | 0.7565 | 0.8076 | 7 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|