PPO_Pendulum_v1_tuned / config.json
MattStammers's picture
Upload PPO Tuned Pendulum in under 50,000 steps
cc7f9f2
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x797212c65ea0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x797212c65f30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x797212c65fc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x797212c66050>", "_build": "<function ActorCriticPolicy._build at 0x797212c660e0>", "forward": "<function ActorCriticPolicy.forward at 0x797212c66170>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x797212c66200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x797212c66290>", "_predict": "<function ActorCriticPolicy._predict at 0x797212c66320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x797212c663b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x797212c66440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x797212c664d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x797212c6d6c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 51200, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": 1, "action_noise": null, "start_time": 1691483336378687136, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAADWrUj4Xhno/4TG4vpSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGCl30PH1e2MAWyUS8iMAXSUR0BOjtrsSkCWdX2UKGgGR8BwuLoJRfnfaAdLyGgIR0BOo/WDpTuOdX2UKGgGR8BgtQq7ROUMaAdLyGgIR0BOuQ1zhgmadX2UKGgGR8BvVIgzP8htaAdLyGgIR0BO0AEt/WlNdX2UKGgGR8Bfrd9Dx9XtaAdLyGgIR0BO5LNfPX05dX2UKGgGR8B2jxpFkQPJaAdLyGgIR0BO+k8zQ/ordX2UKGgGR8CA2wcjqv/zaAdLyGgIR0BPEAAIY3vQdX2UKGgGR8BgpwcghbGFaAdLyGgIR0BQC5QpF1B/dX2UKGgGR8B4cEKzAvcraAdLyGgIR0BQG6fFrEcbdX2UKGgGR8BiELa7EpAlaAdLyGgIR0BQKsG1QZXNdX2UKGgGR8BxHROnEVFhaAdLyGgIR0BQOZOSGJvYdX2UKGgGR8BhGCXnhbW3aAdLyGgIR0BQSN2xIJ7cdX2UKGgGR8Bw6ZrylN1yaAdLyGgIR0BQWg75mAbydX2UKGgGR8BwTOOOsDGMaAdLyGgIR0BQa05lvqC6dX2UKGgGR8Bwo84//vORaAdLyGgIR0BQe19v0h/zdX2UKGgGR8BwMBxHXmNjaAdLyGgIR0BQimygPEsKdX2UKGgGR8BnUVqDbrTqaAdLyGgIR0BQlWlhw2l3dX2UKGgGR8BhRbjLjghsaAdLyGgIR0BQn3l4keIVdX2UKGgGR8BhJLg0j1PFaAdLyGgIR0BRBqBy0a60dX2UKGgGR8Bgyxswco6TaAdLyGgIR0BREQpazNUwdX2UKGgGR8AMI0TDfm9yaAdLyGgIR0BRHEGiYb84dX2UKGgGR8B5eF17pmmMaAdLyGgIR0BRJnO0LMLXdX2UKGgGR8BhQjt/nW8RaAdLyGgIR0BRMMbaRISUdX2UKGgGR8AXawUxmCiAaAdLyGgIR0BROuQEIPbxdX2UKGgGR8BhoyY3Ns3yaAdLyGgIR0BRRVIEr5IpdX2UKGgGR8BwQgE/0NBoaAdLyGgIR0BRT8Vk+X7cdX2UKGgGR8Bx82pqASWaaAdLyGgIR0BRWuj/MnqndX2UKGgGR8B4ybOzIFNdaAdLyGgIR0BRZVkhA4XGdX2UKGgGR8Bw9d7TlT3qaAdLyGgIR0BRxQQtjCpFdX2UKGgGR8BhYgZCOWB0aAdLyGgIR0BRzvldTo+wdX2UKGgGR8BgA7Ai3XqaaAdLyGgIR0BR2dwzch1UdX2UKGgGR8BlDvKnvUjLaAdLyGgIR0BR46bz9S/CdX2UKGgGR8B6UI+LWI43aAdLyGgIR0BR7ZRCQcPwdX2UKGgGR8Bwr7YcvM8paAdLyGgIR0BR985wOvt/dX2UKGgGR8Bg2l+so2GZaAdLyGgIR0BSAeFHrhR7dX2UKGgGR8Bwe5A7gbZOaAdLyGgIR0BSC9eD3/PxdX2UKGgGR8B4t7vBrN4aaAdLyGgIR0BSFnAh0QsgdX2UKGgGR8Bha/ukUKzBaAdLyGgIR0BSIQ7YChexdX2UKGgGR8Bwe75XU6PsaAdLyGgIR0BShPywwCbMdX2UKGgGR8AMjELpiZv2aAdLyGgIR0BSjxC+lCTmdX2UKGgGR8B5jya7VawEaAdLyGgIR0BSmZEQXhwVdX2UKGgGR8Bw5G6H0se5aAdLyGgIR0BSpBD9fkWAdX2UKGgGR8BxdrQ5WBBiaAdLyGgIR0BSrhUWEbo9dX2UKGgGR8BgogHmig01aAdLyGgIR0BSuOjM3ZPEdX2UKGgGR8BuN1ph4MWoaAdLyGgIR0BSw0xVQyh0dX2UKGgGR8BhKGieumrKaAdLyGgIR0BSzT9bX6IndX2UKGgGR8Bw25hUipvQaAdLyGgIR0BS102P1ct5dX2UKGgGR8BhCmnQ6ZH/aAdLyGgIR0BS4fXkHUtqdX2UKGgGR8Bgz8JIDoyLaAdLyGgIR0BTaFkYoAn2dX2UKGgGR8B3BueXiR4haAdLyGgIR0BTdrcO9WZJdX2UKGgGR8BhHCHEdeY2aAdLyGgIR0BThfAKv3ajdX2UKGgGR8B4yv+dbxEwaAdLyGgIR0BTlOdGy5ZsdX2UKGgGR8B3wSr+5vtMaAdLyGgIR0BTpQLiMo+fdX2UKGgGR8Bx6Xtb9qDcaAdLyGgIR0BTtgqEvkBCdX2UKGgGR8Bw9Msqaw2VaAdLyGgIR0BTx85fdAPedX2UKGgGR8BxE4lt0mtyaAdLyGgIR0BT1PPPcBU8dX2UKGgGR8B4217+kxh2aAdLyGgIR0BT32kep4r0dX2UKGgGR8BwYHsZ5zHTaAdLyGgIR0BT6d6kZaV2dX2UKGgGR8BhLrXxvvSdaAdLyGgIR0BT9PZ7HAARdX2UKGgGR8Bwp8l4TsY3aAdLyGgIR0BUWAtapxWDdX2UKGgGR8ABC/TLGJemaAdLyGgIR0BUYh60IC2ddX2UKGgGR8Bg1nvUjLSvaAdLyGgIR0BUbKdYnv2HdX2UKGgGR8ByCmALApKBaAdLyGgIR0BUd5u2qkuZdX2UKGgGR8BvwfYraufVaAdLyGgIR0BUgbFfiPyTdX2UKGgGR8BxMsvRJEpiaAdLyGgIR0BUjZHmRvFWdX2UKGgGR8AVZ0vGp++eaAdLyGgIR0BUl4ZAIIGAdX2UKGgGR8BgmimQ8wHraAdLyGgIR0BUoeA7PppwdX2UKGgGR8AXdYB/7SApaAdLyGgIR0BUq6nivPkadX2UKGgGR8B5lF8BuGbkaAdLyGgIR0BUtmRzRx95dX2UKGgGR8BxLGv9tMwlaAdLyGgIR0BVGjCcf/3ndX2UKGgGR8Bws2UeMhouaAdLyGgIR0BVJB3mmtQsdX2UKGgGR8BgcCc5Ke05aAdLyGgIR0BVLfT9bX6JdX2UKGgGR8BhLS6OHWSVaAdLyGgIR0BVOKn3ta6jdX2UKGgGR8B3jtA2Q4jsaAdLyGgIR0BVQodU83dcdX2UKGgGR8BgK5cZ9/jLaAdLyGgIR0BVTdjoZAIIdX2UKGgGR8BhGM3Ov+wUaAdLyGgIR0BVV+bExZdOdX2UKGgGR8BgmkV8CxNZaAdLyGgIR0BVYiPuG9HudX2UKGgGR8Buuqq+8Gs4aAdLyGgIR0BVbBNM495hdX2UKGgGR8BgRhBeHBUJaAdLyGgIR0BVdrU9ZA6ddX2UKGgGR8BhsGKKpDNRaAdLyGgIR0BV2gljVhCudX2UKGgGR8BgsYLApKBeaAdLyGgIR0BV5EgW8AaOdX2UKGgGR8B32VGqgh8qaAdLyGgIR0BV7oY3vQWvdX2UKGgGR8B7NM7aIvalaAdLyGgIR0BV+dE1EVnFdX2UKGgGR8BwmKN2ki2VaAdLyGgIR0BWBBf8dgfEdX2UKGgGR8ByVgaFVT73aAdLyGgIR0BWDs/Y8Md+dX2UKGgGR8BwoLfDUExJaAdLyGgIR0BWGdN8E3bVdX2UKGgGR8BxB9vUBnzyaAdLyGgIR0BWJCZOSGJvdX2UKGgGR8CAJtmbLEDRaAdLyGgIR0BWLlNDc/MXdX2UKGgGR8B1Ikm+j/MoaAdLyGgIR0BWOaWgOBlMdX2UKGgGR8Bwvl9Ujs2OaAdLyGgIR0BWxneFcpsodX2UKGgGR8Bwf9U0elsQaAdLyGgIR0BW107OmixndX2UKGgGR8Be69OmBOHnaAdLyGgIR0BW5qjBVMmGdX2UKGgGR8B5xW5mRNh3aAdLyGgIR0BW9sf/3nIRdX2UKGgGR8BgIaeCkGiYaAdLyGgIR0BXB4tthuwYdX2UKGgGR8Bwu3X5FgDzaAdLyGgIR0BXF5myxA0LdX2UKGgGR8BhXkmhM8HOaAdLyGgIR0BXIeS4e9zwdX2UKGgGR8BvrRxrBTGYaAdLyGgIR0BXLCPyTY/WdX2UKGgGR8Bg8yt/4IrwaAdLyGgIR0BXNn1nM+vAdX2UKGgGR8Bg3DXBguyvaAdLyGgIR0BXQYjSofjkdX2UKGgGR8Bh0NjLB9CvaAdLyGgIR0BXS47ihnJ1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoCksDhZRoGHSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "low_repr": "[-1. -1. -8.]", "high_repr": "[1. 1. 8.]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVLQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYBAAAAAAAAAAGUaBRLAYWUaBh0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgQKJYEAAAAAAAAAAAAAMCUaApLAYWUaBh0lFKUjARoaWdolGgQKJYEAAAAAAAAAAAAAECUaApLAYWUaBh0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooRfrwPMm99bipsddv+S0hbnACMA2luY5SKEXuTQFe5V5ihlfhFJtryKpIAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-2.]", "high": "[2.]", "low_repr": "-2.0", "high_repr": "2.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 2048, "gamma": 0.9, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}