MattStammers commited on
Commit
0c96847
1 Parent(s): 50c3a77

Initial commit

Browse files
README.md CHANGED
@@ -1,3 +1,37 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.97 +/- 0.71
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a0b1ccb710d042bfe44d845be64eef41e5137e985452fd3f5bb03248d202d5f
3
+ size 109015
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79a52e390280>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x79a52e37b5c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 4500000,
23
+ "_total_timesteps": 4500000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691246506080590050,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAAwnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAATLLJvpO/wD8BRl8/BENpvws7q74nEi8/JcixPq8KRD89CMq/BbR0P6gUuT+dUtC/19vFP3hpqT8hziy+iY2AP4iqI79Gshy/lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADCd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz2UaA5LBksGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]]",
38
+ "desired_goal": "[[-0.39393842 1.5058464 0.8721619 ]\n [-0.9111788 -0.33443484 0.68387073]\n [ 0.3472301 0.765788 -1.5783764 ]\n [ 0.9558719 1.4459429 -1.6275212 ]\n [ 1.5457715 1.3235312 -0.16875507]\n [ 1.0043193 -0.63932085 -0.61209524]]",
39
+ "observation": "[[ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAEBAQEBAZSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAadsEPTXiMz3O+hk+Gt6qvY7+D76vdoo+stOePc+Psr26+Yg+qDdDvRCkATx5vuQ9k9HlvaqQ7D2Fm3c+EXauvfDyhjzBCZY+lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.03243581 0.0439169 0.1503708 ]\n [-0.08343144 -0.14061949 0.27043673]\n [ 0.07755221 -0.08718836 0.26753026]\n [-0.0476605 0.00791265 0.11169142]\n [-0.11221614 0.1155103 0.2418042 ]\n [-0.08518613 0.01647326 0.29304317]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6xnCMcv+CsCUhpRSlIwBbJRLMowBdJRHQMTC3o+W4Vh1fZQoaAZoCWgPQwhTliGOdTERwJSGlFKUaBVLMmgWR0DEws93IMjNdX2UKGgGaAloD0MI8dk6ONg7DMCUhpRSlGgVSzJoFkdAxMLAaCL/CXV9lChoBmgJaA9DCEs9C0J5/wvAlIaUUpRoFUsyaBZHQMTCsRX4j8l1fZQoaAZoCWgPQwiMZmX7kNcKwJSGlFKUaBVLMmgWR0DEw0s+A3DOdX2UKGgGaAloD0MINNjUeVS8EsCUhpRSlGgVSzJoFkdAxMM71tfoinV9lChoBmgJaA9DCEa28/3UKBDAlIaUUpRoFUsyaBZHQMTDLKW9lEt1fZQoaAZoCWgPQwis5GN3gQIQwJSGlFKUaBVLMmgWR0DEwx2OAAhjdX2UKGgGaAloD0MIOdTvwtYsCMCUhpRSlGgVSzJoFkdAxMMOe9zwMHV9lChoBmgJaA9DCPkP6bevww/AlIaUUpRoFUsyaBZHQMTC/yQPqcF1fZQoaAZoCWgPQwj7PhwkRBkRwJSGlFKUaBVLMmgWR0DEw5lpoK2KdX2UKGgGaAloD0MIc3/1uG+1EMCUhpRSlGgVSzJoFkdAxMOJ/p+tsHV9lChoBmgJaA9DCF0av/BKcgnAlIaUUpRoFUsyaBZHQMTDesi8nNR1fZQoaAZoCWgPQwh6whIPKFsZwJSGlFKUaBVLMmgWR0DEw2uvECNkdX2UKGgGaAloD0MI7BNAMbIkEMCUhpRSlGgVSzJoFkdAxMNcnRb8nHV9lChoBmgJaA9DCPUPIhlybA/AlIaUUpRoFUsyaBZHQMTDTVJL/S91fZQoaAZoCWgPQwjnqQ65GS4VwJSGlFKUaBVLMmgWR0DEw+c1wYLtdX2UKGgGaAloD0MIQWSRJt4BB8CUhpRSlGgVSzJoFkdAxMPX5yEL6XV9lChoBmgJaA9DCC0HeqhtYwzAlIaUUpRoFUsyaBZHQMTDyLAYYSB1fZQoaAZoCWgPQwi2D3nL1b8RwJSGlFKUaBVLMmgWR0DEw7mZXuE3dX2UKGgGaAloD0MIN6rTgazHDcCUhpRSlGgVSzJoFkdAxMOqi/O+qXV9lChoBmgJaA9DCFopBHKJYwnAlIaUUpRoFUsyaBZHQMTDmzCk43p1fZQoaAZoCWgPQwie7GZGPzoIwJSGlFKUaBVLMmgWR0DExDn9UCJXdX2UKGgGaAloD0MIrg/rjVqhCMCUhpRSlGgVSzJoFkdAxMQqloDgZXV9lChoBmgJaA9DCBqiCn+GBxDAlIaUUpRoFUsyaBZHQMTEG2ki2Ul1fZQoaAZoCWgPQwhcBMb6BkYMwJSGlFKUaBVLMmgWR0DExAxSxZ+ydX2UKGgGaAloD0MIcqd0sP5/EcCUhpRSlGgVSzJoFkdAxMP9RnezlnV9lChoBmgJaA9DCKw7Ftuk4gfAlIaUUpRoFUsyaBZHQMTD7e2/i5x1fZQoaAZoCWgPQwiespquJ5oJwJSGlFKUaBVLMmgWR0DExI7R+jM3dX2UKGgGaAloD0MIYjHqWnuvEMCUhpRSlGgVSzJoFkdAxMR/njABUHV9lChoBmgJaA9DCDjb3JieEBbAlIaUUpRoFUsyaBZHQMTEcJXhfjV1fZQoaAZoCWgPQwgzF7g81twUwJSGlFKUaBVLMmgWR0DExGGyX2M9dX2UKGgGaAloD0MIWtjTDn/NEsCUhpRSlGgVSzJoFkdAxMRSzjWCmXV9lChoBmgJaA9DCIHrihnhHRHAlIaUUpRoFUsyaBZHQMTEQ4JVsDZ1fZQoaAZoCWgPQwgqjgOvltsKwJSGlFKUaBVLMmgWR0DExOTDTBqLdX2UKGgGaAloD0MI7WEvFLDdCsCUhpRSlGgVSzJoFkdAxMTVaQmu1XV9lChoBmgJaA9DCPH0SlmGOA/AlIaUUpRoFUsyaBZHQMTExj81n/V1fZQoaAZoCWgPQwhJnBVREz0WwJSGlFKUaBVLMmgWR0DExLc85jpcdX2UKGgGaAloD0MI+dwJ9l/HDMCUhpRSlGgVSzJoFkdAxMSoOpbUw3V9lChoBmgJaA9DCJXx7zMuHA3AlIaUUpRoFUsyaBZHQMTEmPfKp1l1fZQoaAZoCWgPQwhC6nb2lUcQwJSGlFKUaBVLMmgWR0DExTeMXJo1dX2UKGgGaAloD0MIwmwCDMu/EcCUhpRSlGgVSzJoFkdAxMUoILPUrnV9lChoBmgJaA9DCGyyRj1E4wrAlIaUUpRoFUsyaBZHQMTFGPAfuCx1fZQoaAZoCWgPQwgO9FDbhuEVwJSGlFKUaBVLMmgWR0DExQnUe+23dX2UKGgGaAloD0MI/HJmu0LPF8CUhpRSlGgVSzJoFkdAxMT6yPdVN3V9lChoBmgJaA9DCLOZQ1ILBRHAlIaUUpRoFUsyaBZHQMTE628qWkd1fZQoaAZoCWgPQwj9SufDs4QOwJSGlFKUaBVLMmgWR0DExYgm/nGLdX2UKGgGaAloD0MIliAjoMKhEcCUhpRSlGgVSzJoFkdAxMV4wRoRI3V9lChoBmgJaA9DCIV80LNZtQ3AlIaUUpRoFUsyaBZHQMTFaZtvXK91fZQoaAZoCWgPQwgEyTuHMkQSwJSGlFKUaBVLMmgWR0DExVqDoQnQdX2UKGgGaAloD0MIIenTKvojDMCUhpRSlGgVSzJoFkdAxMVLb/Ot4nV9lChoBmgJaA9DCHjvqDEh1hDAlIaUUpRoFUsyaBZHQMTFPBN21Ul1fZQoaAZoCWgPQwgg0Jm0qZoLwJSGlFKUaBVLMmgWR0DExdZFy7wsdX2UKGgGaAloD0MIaLPqc7VlEsCUhpRSlGgVSzJoFkdAxMXG34sVcnV9lChoBmgJaA9DCD9vKlJhLBDAlIaUUpRoFUsyaBZHQMTFt69CeEt1fZQoaAZoCWgPQwhb0HtjCDATwJSGlFKUaBVLMmgWR0DExaiW7e2vdX2UKGgGaAloD0MIdxVSflKtFcCUhpRSlGgVSzJoFkdAxMWZgqEvkHV9lChoBmgJaA9DCGbdPxaiYwbAlIaUUpRoFUsyaBZHQMTFiiY1He91fZQoaAZoCWgPQwibOSS1UBIPwJSGlFKUaBVLMmgWR0DExiTVBlcydX2UKGgGaAloD0MI6J/gYkVNDMCUhpRSlGgVSzJoFkdAxMYVaVUuMHV9lChoBmgJaA9DCCOGHcakHwvAlIaUUpRoFUsyaBZHQMTGBkUj9n91fZQoaAZoCWgPQwjuBzwwgAAWwJSGlFKUaBVLMmgWR0DExfct7KJVdX2UKGgGaAloD0MI/u2yX3caBsCUhpRSlGgVSzJoFkdAxMXoGRmseXV9lChoBmgJaA9DCGxaKQRyiQ7AlIaUUpRoFUsyaBZHQMTF2Mp5NXZ1fZQoaAZoCWgPQwiTOZZ31dMUwJSGlFKUaBVLMmgWR0DExnPHxSYPdX2UKGgGaAloD0MIw/Ln24JlCcCUhpRSlGgVSzJoFkdAxMZkX2ugYnV9lChoBmgJaA9DCMRg/gqZ6wzAlIaUUpRoFUsyaBZHQMTGVT6i0v51fZQoaAZoCWgPQwjBV3TrNb0OwJSGlFKUaBVLMmgWR0DExkYtthuwdX2UKGgGaAloD0MI+6wyU1pfC8CUhpRSlGgVSzJoFkdAxMY3KuB+WnV9lChoBmgJaA9DCLNBJhk56wjAlIaUUpRoFUsyaBZHQMTGKAO8TSN1fZQoaAZoCWgPQwinIhXGFpIQwJSGlFKUaBVLMmgWR0DExsHIfbKzdX2UKGgGaAloD0MIzeUGQx02FMCUhpRSlGgVSzJoFkdAxMayXhwVCXV9lChoBmgJaA9DCLudfeVBOgfAlIaUUpRoFUsyaBZHQMTGozGYKIB1fZQoaAZoCWgPQwgaGeQuwvQMwJSGlFKUaBVLMmgWR0DExpQZuQ6qdX2UKGgGaAloD0MInuv7cJBAEMCUhpRSlGgVSzJoFkdAxMaFC6YmcHV9lChoBmgJaA9DCAvQtpp1hgrAlIaUUpRoFUsyaBZHQMTGdbDuSfV1fZQoaAZoCWgPQwjFO8CTFk4RwJSGlFKUaBVLMmgWR0DExw/LeQ+2dX2UKGgGaAloD0MIzuDvF7OlD8CUhpRSlGgVSzJoFkdAxMcAcMEzPHV9lChoBmgJaA9DCNcVM8Lbow/AlIaUUpRoFUsyaBZHQMTG8UvwmVt1fZQoaAZoCWgPQwjdlPJaCV0NwJSGlFKUaBVLMmgWR0DExuI2jwhGdX2UKGgGaAloD0MIf9qoTgfSBcCUhpRSlGgVSzJoFkdAxMbTI+W4VnV9lChoBmgJaA9DCNe/6zNnnQzAlIaUUpRoFUsyaBZHQMTGw8uBczJ1fZQoaAZoCWgPQwhupkI8Ei8JwJSGlFKUaBVLMmgWR0DEx1z1uivgdX2UKGgGaAloD0MIuAa2SrD4CsCUhpRSlGgVSzJoFkdAxMdNkSVW0nV9lChoBmgJaA9DCP1OkxlvywzAlIaUUpRoFUsyaBZHQMTHPmKZUkx1fZQoaAZoCWgPQwisyOiAJEwIwJSGlFKUaBVLMmgWR0DExy9Fc6eYdX2UKGgGaAloD0MI275H/fXqC8CUhpRSlGgVSzJoFkdAxMcgLaVUuXV9lChoBmgJaA9DCFK13QTf1ArAlIaUUpRoFUsyaBZHQMTHENJ4B3l1fZQoaAZoCWgPQwgA/ilVoswPwJSGlFKUaBVLMmgWR0DEx6soScsldX2UKGgGaAloD0MI6lxRSggWDsCUhpRSlGgVSzJoFkdAxMebxd6cAnV9lChoBmgJaA9DCDVgkPRpdQ7AlIaUUpRoFUsyaBZHQMTHjI68xsV1fZQoaAZoCWgPQwgE4nX9gv0NwJSGlFKUaBVLMmgWR0DEx318XvYwdX2UKGgGaAloD0MIhLweTIpPE8CUhpRSlGgVSzJoFkdAxMduatLcsXV9lChoBmgJaA9DCBOe0OtPQg3AlIaUUpRoFUsyaBZHQMTHXxODaoN1fZQoaAZoCWgPQwghdTv7yoMRwJSGlFKUaBVLMmgWR0DEx/myTpxFdX2UKGgGaAloD0MIs7PonQpYB8CUhpRSlGgVSzJoFkdAxMfqSxqwhXV9lChoBmgJaA9DCFFoWfeP5Q3AlIaUUpRoFUsyaBZHQMTH2xJmNBF1fZQoaAZoCWgPQwjWVYFaDD4JwJSGlFKUaBVLMmgWR0DEx8v3nIQwdX2UKGgGaAloD0MImKYIcHoXC8CUhpRSlGgVSzJoFkdAxMe8+mFajnV9lChoBmgJaA9DCERuhhvwWQnAlIaUUpRoFUsyaBZHQMTHraAOJ+F1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 150000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 6
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8033a09ec25dfc1672d5e628b0dc4ac73cc490f478155835e15025759f6c0ad4
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a5012d00ce3cc1eeaee5046bd689a43e58b69405d46ea715eba40ee411ec20b
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79a52e390280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79a52e37b5c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 4500000, "_total_timesteps": 4500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691246506080590050, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAAwnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/wnfHPlqnAb2DVTQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAATLLJvpO/wD8BRl8/BENpvws7q74nEi8/JcixPq8KRD89CMq/BbR0P6gUuT+dUtC/19vFP3hpqT8hziy+iY2AP4iqI79Gshy/lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADCd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz3Cd8c+WqcBvYNVND+bUZg8mh5Eu5iuAz2UaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]\n [ 0.38958555 -0.03165374 0.7044298 ]]", "desired_goal": "[[-0.39393842 1.5058464 0.8721619 ]\n [-0.9111788 -0.33443484 0.68387073]\n [ 0.3472301 0.765788 -1.5783764 ]\n [ 0.9558719 1.4459429 -1.6275212 ]\n [ 1.5457715 1.3235312 -0.16875507]\n [ 1.0043193 -0.63932085 -0.61209524]]", "observation": "[[ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]\n [ 0.38958555 -0.03165374 0.7044298 0.0185936 -0.00299255 0.03214893]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAEBAQEBAZSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVGwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolkgAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksGSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolkgAAAAAAAAAadsEPTXiMz3O+hk+Gt6qvY7+D76vdoo+stOePc+Psr26+Yg+qDdDvRCkATx5vuQ9k9HlvaqQ7D2Fm3c+EXauvfDyhjzBCZY+lGgOSwZLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBksGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03243581 0.0439169 0.1503708 ]\n [-0.08343144 -0.14061949 0.27043673]\n [ 0.07755221 -0.08718836 0.26753026]\n [-0.0476605 0.00791265 0.11169142]\n [-0.11221614 0.1155103 0.2418042 ]\n [-0.08518613 0.01647326 0.29304317]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6xnCMcv+CsCUhpRSlIwBbJRLMowBdJRHQMTC3o+W4Vh1fZQoaAZoCWgPQwhTliGOdTERwJSGlFKUaBVLMmgWR0DEws93IMjNdX2UKGgGaAloD0MI8dk6ONg7DMCUhpRSlGgVSzJoFkdAxMLAaCL/CXV9lChoBmgJaA9DCEs9C0J5/wvAlIaUUpRoFUsyaBZHQMTCsRX4j8l1fZQoaAZoCWgPQwiMZmX7kNcKwJSGlFKUaBVLMmgWR0DEw0s+A3DOdX2UKGgGaAloD0MINNjUeVS8EsCUhpRSlGgVSzJoFkdAxMM71tfoinV9lChoBmgJaA9DCEa28/3UKBDAlIaUUpRoFUsyaBZHQMTDLKW9lEt1fZQoaAZoCWgPQwis5GN3gQIQwJSGlFKUaBVLMmgWR0DEwx2OAAhjdX2UKGgGaAloD0MIOdTvwtYsCMCUhpRSlGgVSzJoFkdAxMMOe9zwMHV9lChoBmgJaA9DCPkP6bevww/AlIaUUpRoFUsyaBZHQMTC/yQPqcF1fZQoaAZoCWgPQwj7PhwkRBkRwJSGlFKUaBVLMmgWR0DEw5lpoK2KdX2UKGgGaAloD0MIc3/1uG+1EMCUhpRSlGgVSzJoFkdAxMOJ/p+tsHV9lChoBmgJaA9DCF0av/BKcgnAlIaUUpRoFUsyaBZHQMTDesi8nNR1fZQoaAZoCWgPQwh6whIPKFsZwJSGlFKUaBVLMmgWR0DEw2uvECNkdX2UKGgGaAloD0MI7BNAMbIkEMCUhpRSlGgVSzJoFkdAxMNcnRb8nHV9lChoBmgJaA9DCPUPIhlybA/AlIaUUpRoFUsyaBZHQMTDTVJL/S91fZQoaAZoCWgPQwjnqQ65GS4VwJSGlFKUaBVLMmgWR0DEw+c1wYLtdX2UKGgGaAloD0MIQWSRJt4BB8CUhpRSlGgVSzJoFkdAxMPX5yEL6XV9lChoBmgJaA9DCC0HeqhtYwzAlIaUUpRoFUsyaBZHQMTDyLAYYSB1fZQoaAZoCWgPQwi2D3nL1b8RwJSGlFKUaBVLMmgWR0DEw7mZXuE3dX2UKGgGaAloD0MIN6rTgazHDcCUhpRSlGgVSzJoFkdAxMOqi/O+qXV9lChoBmgJaA9DCFopBHKJYwnAlIaUUpRoFUsyaBZHQMTDmzCk43p1fZQoaAZoCWgPQwie7GZGPzoIwJSGlFKUaBVLMmgWR0DExDn9UCJXdX2UKGgGaAloD0MIrg/rjVqhCMCUhpRSlGgVSzJoFkdAxMQqloDgZXV9lChoBmgJaA9DCBqiCn+GBxDAlIaUUpRoFUsyaBZHQMTEG2ki2Ul1fZQoaAZoCWgPQwhcBMb6BkYMwJSGlFKUaBVLMmgWR0DExAxSxZ+ydX2UKGgGaAloD0MIcqd0sP5/EcCUhpRSlGgVSzJoFkdAxMP9RnezlnV9lChoBmgJaA9DCKw7Ftuk4gfAlIaUUpRoFUsyaBZHQMTD7e2/i5x1fZQoaAZoCWgPQwiespquJ5oJwJSGlFKUaBVLMmgWR0DExI7R+jM3dX2UKGgGaAloD0MIYjHqWnuvEMCUhpRSlGgVSzJoFkdAxMR/njABUHV9lChoBmgJaA9DCDjb3JieEBbAlIaUUpRoFUsyaBZHQMTEcJXhfjV1fZQoaAZoCWgPQwgzF7g81twUwJSGlFKUaBVLMmgWR0DExGGyX2M9dX2UKGgGaAloD0MIWtjTDn/NEsCUhpRSlGgVSzJoFkdAxMRSzjWCmXV9lChoBmgJaA9DCIHrihnhHRHAlIaUUpRoFUsyaBZHQMTEQ4JVsDZ1fZQoaAZoCWgPQwgqjgOvltsKwJSGlFKUaBVLMmgWR0DExOTDTBqLdX2UKGgGaAloD0MI7WEvFLDdCsCUhpRSlGgVSzJoFkdAxMTVaQmu1XV9lChoBmgJaA9DCPH0SlmGOA/AlIaUUpRoFUsyaBZHQMTExj81n/V1fZQoaAZoCWgPQwhJnBVREz0WwJSGlFKUaBVLMmgWR0DExLc85jpcdX2UKGgGaAloD0MI+dwJ9l/HDMCUhpRSlGgVSzJoFkdAxMSoOpbUw3V9lChoBmgJaA9DCJXx7zMuHA3AlIaUUpRoFUsyaBZHQMTEmPfKp1l1fZQoaAZoCWgPQwhC6nb2lUcQwJSGlFKUaBVLMmgWR0DExTeMXJo1dX2UKGgGaAloD0MIwmwCDMu/EcCUhpRSlGgVSzJoFkdAxMUoILPUrnV9lChoBmgJaA9DCGyyRj1E4wrAlIaUUpRoFUsyaBZHQMTFGPAfuCx1fZQoaAZoCWgPQwgO9FDbhuEVwJSGlFKUaBVLMmgWR0DExQnUe+23dX2UKGgGaAloD0MI/HJmu0LPF8CUhpRSlGgVSzJoFkdAxMT6yPdVN3V9lChoBmgJaA9DCLOZQ1ILBRHAlIaUUpRoFUsyaBZHQMTE628qWkd1fZQoaAZoCWgPQwj9SufDs4QOwJSGlFKUaBVLMmgWR0DExYgm/nGLdX2UKGgGaAloD0MIliAjoMKhEcCUhpRSlGgVSzJoFkdAxMV4wRoRI3V9lChoBmgJaA9DCIV80LNZtQ3AlIaUUpRoFUsyaBZHQMTFaZtvXK91fZQoaAZoCWgPQwgEyTuHMkQSwJSGlFKUaBVLMmgWR0DExVqDoQnQdX2UKGgGaAloD0MIIenTKvojDMCUhpRSlGgVSzJoFkdAxMVLb/Ot4nV9lChoBmgJaA9DCHjvqDEh1hDAlIaUUpRoFUsyaBZHQMTFPBN21Ul1fZQoaAZoCWgPQwgg0Jm0qZoLwJSGlFKUaBVLMmgWR0DExdZFy7wsdX2UKGgGaAloD0MIaLPqc7VlEsCUhpRSlGgVSzJoFkdAxMXG34sVcnV9lChoBmgJaA9DCD9vKlJhLBDAlIaUUpRoFUsyaBZHQMTFt69CeEt1fZQoaAZoCWgPQwhb0HtjCDATwJSGlFKUaBVLMmgWR0DExaiW7e2vdX2UKGgGaAloD0MIdxVSflKtFcCUhpRSlGgVSzJoFkdAxMWZgqEvkHV9lChoBmgJaA9DCGbdPxaiYwbAlIaUUpRoFUsyaBZHQMTFiiY1He91fZQoaAZoCWgPQwibOSS1UBIPwJSGlFKUaBVLMmgWR0DExiTVBlcydX2UKGgGaAloD0MI6J/gYkVNDMCUhpRSlGgVSzJoFkdAxMYVaVUuMHV9lChoBmgJaA9DCCOGHcakHwvAlIaUUpRoFUsyaBZHQMTGBkUj9n91fZQoaAZoCWgPQwjuBzwwgAAWwJSGlFKUaBVLMmgWR0DExfct7KJVdX2UKGgGaAloD0MI/u2yX3caBsCUhpRSlGgVSzJoFkdAxMXoGRmseXV9lChoBmgJaA9DCGxaKQRyiQ7AlIaUUpRoFUsyaBZHQMTF2Mp5NXZ1fZQoaAZoCWgPQwiTOZZ31dMUwJSGlFKUaBVLMmgWR0DExnPHxSYPdX2UKGgGaAloD0MIw/Ln24JlCcCUhpRSlGgVSzJoFkdAxMZkX2ugYnV9lChoBmgJaA9DCMRg/gqZ6wzAlIaUUpRoFUsyaBZHQMTGVT6i0v51fZQoaAZoCWgPQwjBV3TrNb0OwJSGlFKUaBVLMmgWR0DExkYtthuwdX2UKGgGaAloD0MI+6wyU1pfC8CUhpRSlGgVSzJoFkdAxMY3KuB+WnV9lChoBmgJaA9DCLNBJhk56wjAlIaUUpRoFUsyaBZHQMTGKAO8TSN1fZQoaAZoCWgPQwinIhXGFpIQwJSGlFKUaBVLMmgWR0DExsHIfbKzdX2UKGgGaAloD0MIzeUGQx02FMCUhpRSlGgVSzJoFkdAxMayXhwVCXV9lChoBmgJaA9DCLudfeVBOgfAlIaUUpRoFUsyaBZHQMTGozGYKIB1fZQoaAZoCWgPQwgaGeQuwvQMwJSGlFKUaBVLMmgWR0DExpQZuQ6qdX2UKGgGaAloD0MInuv7cJBAEMCUhpRSlGgVSzJoFkdAxMaFC6YmcHV9lChoBmgJaA9DCAvQtpp1hgrAlIaUUpRoFUsyaBZHQMTGdbDuSfV1fZQoaAZoCWgPQwjFO8CTFk4RwJSGlFKUaBVLMmgWR0DExw/LeQ+2dX2UKGgGaAloD0MIzuDvF7OlD8CUhpRSlGgVSzJoFkdAxMcAcMEzPHV9lChoBmgJaA9DCNcVM8Lbow/AlIaUUpRoFUsyaBZHQMTG8UvwmVt1fZQoaAZoCWgPQwjdlPJaCV0NwJSGlFKUaBVLMmgWR0DExuI2jwhGdX2UKGgGaAloD0MIf9qoTgfSBcCUhpRSlGgVSzJoFkdAxMbTI+W4VnV9lChoBmgJaA9DCNe/6zNnnQzAlIaUUpRoFUsyaBZHQMTGw8uBczJ1fZQoaAZoCWgPQwhupkI8Ei8JwJSGlFKUaBVLMmgWR0DEx1z1uivgdX2UKGgGaAloD0MIuAa2SrD4CsCUhpRSlGgVSzJoFkdAxMdNkSVW0nV9lChoBmgJaA9DCP1OkxlvywzAlIaUUpRoFUsyaBZHQMTHPmKZUkx1fZQoaAZoCWgPQwisyOiAJEwIwJSGlFKUaBVLMmgWR0DExy9Fc6eYdX2UKGgGaAloD0MI275H/fXqC8CUhpRSlGgVSzJoFkdAxMcgLaVUuXV9lChoBmgJaA9DCFK13QTf1ArAlIaUUpRoFUsyaBZHQMTHENJ4B3l1fZQoaAZoCWgPQwgA/ilVoswPwJSGlFKUaBVLMmgWR0DEx6soScsldX2UKGgGaAloD0MI6lxRSggWDsCUhpRSlGgVSzJoFkdAxMebxd6cAnV9lChoBmgJaA9DCDVgkPRpdQ7AlIaUUpRoFUsyaBZHQMTHjI68xsV1fZQoaAZoCWgPQwgE4nX9gv0NwJSGlFKUaBVLMmgWR0DEx318XvYwdX2UKGgGaAloD0MIhLweTIpPE8CUhpRSlGgVSzJoFkdAxMduatLcsXV9lChoBmgJaA9DCBOe0OtPQg3AlIaUUpRoFUsyaBZHQMTHXxODaoN1fZQoaAZoCWgPQwghdTv7yoMRwJSGlFKUaBVLMmgWR0DEx/myTpxFdX2UKGgGaAloD0MIs7PonQpYB8CUhpRSlGgVSzJoFkdAxMfqSxqwhXV9lChoBmgJaA9DCFFoWfeP5Q3AlIaUUpRoFUsyaBZHQMTH2xJmNBF1fZQoaAZoCWgPQwjWVYFaDD4JwJSGlFKUaBVLMmgWR0DEx8v3nIQwdX2UKGgGaAloD0MImKYIcHoXC8CUhpRSlGgVSzJoFkdAxMe8+mFajnV9lChoBmgJaA9DCERuhhvwWQnAlIaUUpRoFUsyaBZHQMTHraAOJ+F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 6, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (876 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.9737947010435164, "std_reward": 0.7094903530648023, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-05T17:39:08.317897"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2b456eead548026b6def964b95130c66c48e7f9ac39c967c92654868d630e52
3
+ size 2387