--- library_name: transformers license: apache-2.0 base_model: sanchit-gandhi/distilhubert-finetuned-gtzan tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: Mawaddaa/distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # Mawaddaa/distilhubert-finetuned-gtzan This model is a fine-tuned version of [sanchit-gandhi/distilhubert-finetuned-gtzan](https://huggingface.co/sanchit-gandhi/distilhubert-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8145 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9096 | 1.0 | 225 | 1.7239 | 0.49 | | 1.056 | 2.0 | 450 | 1.1898 | 0.66 | | 0.5824 | 3.0 | 675 | 0.7905 | 0.74 | | 0.2286 | 4.0 | 900 | 0.7436 | 0.8 | | 0.3129 | 5.0 | 1125 | 0.5656 | 0.84 | | 0.046 | 6.0 | 1350 | 0.6575 | 0.83 | | 0.1413 | 7.0 | 1575 | 0.6421 | 0.83 | | 0.0208 | 8.0 | 1800 | 0.8335 | 0.84 | | 0.0088 | 9.0 | 2025 | 0.8039 | 0.85 | | 0.0087 | 10.0 | 2250 | 0.8145 | 0.83 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1