import torch import transformers from transformers import AutoModelForSequenceClassification, AutoTokenizer class EndpointHandler: def __init__(self, path=""): tokenizer = AutoTokenizer.from_pretrained(path) model = AutoModelForSequenceClassification.from_pretrained(path) model.eval() self.pipeline = transformers.pipeline( "text-classification", model=model, tokenizer=tokenizer ) def __call__(self, data): inputs = data.pop("inputs", data) result = self.pipeline(inputs, truncation=True, padding=False, max_length=512) for item in result: if item['label'] == 'LABEL_0': item['label'] = 'human-written' else: item['label'] = 'AI-generated' return result