MaziyarPanahi commited on
Commit
973761a
1 Parent(s): 454074f

07f528a12ee028804e76382cad652e9feff3febbad886f0e1bf77d21b0f3aa06

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. Meta-Llama-3-8B-Instruct.IQ1_S.gguf +3 -0
  3. README.md +230 -0
.gitattributes CHANGED
@@ -46,3 +46,4 @@ Meta-Llama-3-8B-Instruct.Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
46
  Meta-Llama-3-8B-Instruct.Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
47
  Meta-Llama-3-8B-Instruct.Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
48
  Meta-Llama-3-8B-Instruct.fp16.gguf filter=lfs diff=lfs merge=lfs -text
 
 
46
  Meta-Llama-3-8B-Instruct.Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
47
  Meta-Llama-3-8B-Instruct.Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
48
  Meta-Llama-3-8B-Instruct.fp16.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Meta-Llama-3-8B-Instruct.IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
Meta-Llama-3-8B-Instruct.IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84fd6f62517bdaa257e4cea16c651da1b4ceb23329623edeaa8392afe4cebad4
3
+ size 200008928
README.md ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - quantized
4
+ - 2-bit
5
+ - 3-bit
6
+ - 4-bit
7
+ - 5-bit
8
+ - 6-bit
9
+ - 8-bit
10
+ - GGUF
11
+ - transformers
12
+ - safetensors
13
+ - llama
14
+ - text-generation
15
+ - facebook
16
+ - meta
17
+ - pytorch
18
+ - llama-3
19
+ - conversational
20
+ - en
21
+ - license:other
22
+ - autotrain_compatible
23
+ - endpoints_compatible
24
+ - has_space
25
+ - text-generation-inference
26
+ - region:us
27
+ - text-generation
28
+ model_name: Meta-Llama-3-8B-Instruct-GGUF
29
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
30
+ inference: false
31
+ model_creator: meta-llama
32
+ pipeline_tag: text-generation
33
+ quantized_by: MaziyarPanahi
34
+ ---
35
+ # [MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF](https://huggingface.co/MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF)
36
+ - Model creator: [meta-llama](https://huggingface.co/meta-llama)
37
+ - Original model: [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
38
+
39
+ ## Description
40
+ [MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF](https://huggingface.co/MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF) contains GGUF format model files for [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct).
41
+
42
+ ## How to use
43
+ Thanks to [TheBloke](https://huggingface.co/TheBloke) for preparing an amazing README on how to use GGUF models:
44
+
45
+ ### About GGUF
46
+
47
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
48
+
49
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
50
+
51
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
52
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
53
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
54
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
55
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
56
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
57
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
58
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
59
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
60
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
61
+
62
+ ### Explanation of quantisation methods
63
+
64
+ <details>
65
+ <summary>Click to see details</summary>
66
+
67
+ The new methods available are:
68
+
69
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
70
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
71
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
72
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
73
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
74
+
75
+ ## How to download GGUF files
76
+
77
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
78
+
79
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
80
+
81
+ * LM Studio
82
+ * LoLLMS Web UI
83
+ * Faraday.dev
84
+
85
+ ### In `text-generation-webui`
86
+
87
+ Under Download Model, you can enter the model repo: [MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF](https://huggingface.co/MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF) and below it, a specific filename to download, such as: Meta-Llama-3-8B-Instruct-GGUF.Q4_K_M.gguf.
88
+
89
+ Then click Download.
90
+
91
+ ### On the command line, including multiple files at once
92
+
93
+ I recommend using the `huggingface-hub` Python library:
94
+
95
+ ```shell
96
+ pip3 install huggingface-hub
97
+ ```
98
+
99
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
100
+
101
+ ```shell
102
+ huggingface-cli download MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF Meta-Llama-3-8B-Instruct.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
103
+ ```
104
+ </details>
105
+ <details>
106
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
107
+
108
+ You can also download multiple files at once with a pattern:
109
+
110
+ ```shell
111
+ huggingface-cli download [MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF](https://huggingface.co/MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF) --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
112
+ ```
113
+
114
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
115
+
116
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
117
+
118
+ ```shell
119
+ pip3 install hf_transfer
120
+ ```
121
+
122
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
123
+
124
+ ```shell
125
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MaziyarPanahi/Meta-Llama-3-8B-Instruct-GGUF Meta-Llama-3-8B-Instruct.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
126
+ ```
127
+
128
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
129
+ </details>
130
+
131
+ ## Example `llama.cpp` command
132
+
133
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
134
+
135
+ ```shell
136
+ ./main -ngl 35 -m Meta-Llama-3-8B-Instruct.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system
137
+ {system_message}<|im_end|>
138
+ <|im_start|>user
139
+ {prompt}<|im_end|>
140
+ <|im_start|>assistant"
141
+ ```
142
+
143
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
144
+
145
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
146
+
147
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
148
+
149
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
150
+
151
+ ## How to run in `text-generation-webui`
152
+
153
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20-%20Model%20Tab.md#llamacpp).
154
+
155
+ ## How to run from Python code
156
+
157
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
158
+
159
+ ### How to load this model in Python code, using llama-cpp-python
160
+
161
+ For full documentation, please see: [llama-cpp-python docs](https://github.com/abetlen/llama-cpp-python/).
162
+
163
+ #### First install the package
164
+
165
+ Run one of the following commands, according to your system:
166
+
167
+ ```shell
168
+ # Base ctransformers with no GPU acceleration
169
+ pip install llama-cpp-python
170
+ # With NVidia CUDA acceleration
171
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
172
+ # Or with OpenBLAS acceleration
173
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
174
+ # Or with CLBLast acceleration
175
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
176
+ # Or with AMD ROCm GPU acceleration (Linux only)
177
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
178
+ # Or with Metal GPU acceleration for macOS systems only
179
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
180
+
181
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
182
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
183
+ pip install llama-cpp-python
184
+ ```
185
+
186
+ #### Simple llama-cpp-python example code
187
+
188
+ ```python
189
+ from llama_cpp import Llama
190
+
191
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
192
+ llm = Llama(
193
+ model_path="./Meta-Llama-3-8B-Instruct.Q4_K_M.gguf", # Download the model file first
194
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
195
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
196
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
197
+ )
198
+
199
+ # Simple inference example
200
+ output = llm(
201
+ "<|im_start|>system
202
+ {system_message}<|im_end|>
203
+ <|im_start|>user
204
+ {prompt}<|im_end|>
205
+ <|im_start|>assistant", # Prompt
206
+ max_tokens=512, # Generate up to 512 tokens
207
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
208
+ echo=True # Whether to echo the prompt
209
+ )
210
+
211
+ # Chat Completion API
212
+
213
+ llm = Llama(model_path="./Meta-Llama-3-8B-Instruct.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
214
+ llm.create_chat_completion(
215
+ messages = [
216
+ {"role": "system", "content": "You are a story writing assistant."},
217
+ {
218
+ "role": "user",
219
+ "content": "Write a story about llamas."
220
+ }
221
+ ]
222
+ )
223
+ ```
224
+
225
+ ## How to use with LangChain
226
+
227
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
228
+
229
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
230
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)