File size: 21,668 Bytes
7432dd9
1e5a203
7432dd9
 
1e5a203
 
583f840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89d9d44
 
1e5a203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0851de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
583f840
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
---
license: agpl-3.0
tags:
- merge
- wizardlm
- wizardmath
pipeline_tag: text-generation
model-index:
- name: WizardLM-Math-70B-TIES-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.52
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.87
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 69.24
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 53.61
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 82.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 27.37
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1
      name: Open LLM Leaderboard
---



## Examples



There are three killers in a room. Someone enters the room and kills one of them. Nobody leaves the room. How many killers are left in the room? Explain your reasoning step by step.

```
Initially, there are three killers in the room. Let's call them Killer A, Killer B, and Killer C.

Step 1: Someone enters the room and kills one of the killers. We don't know who this person is or which killer they killed. However, we know that one killer is dead.

Step 2: Now, we have two killers left in the room. These two killers are the ones who were not killed by the person who entered the room.

Step 3: The person who entered the room is not a killer, as they are not included in the initial three killers. However, they have killed one of the killers, so they are not innocent either.

Step 4: Since the person who entered the room is not a killer, we can conclude that there are only two killers left in the room after the incident.

So, the final answer is: There are 2 killers left in the room.

The answer is: there are 2 killers left in the room.
```
Answered wrong!

Mark is faster than Mary , Mary is faster than Joe. Is Joe faster than Mark? Let's think step by step

```
irst, we know that Mark is faster than Mary. This means that if they were to race, Mark would finish before Mary. We can represent this relationship as:

Mark > Mary

Next, we know that Mary is faster than Joe. This means that if Mary and Joe were to race, Mary would finish before Joe. We can represent this relationship as:

Mary > Joe

Now, we want to find out if Joe is faster than Mark. To do this, we can use the transitive property, which states that if A > B and B > C, then A > C. In our case, A represents Mark, B represents Mary, and C represents Joe. So, we can apply the transitive property to our relationships:

Since Mark > Mary and Mary > Joe, we can conclude that Mark > Joe.

So, the final answer is: No, Joe is not faster than Mark.

The answer is: No, Joe is not faster than Mark.
```

If I lay 2 wet shirts out in the sun flat on the ground to dry and it takes 5 hours until they are dry, how long would it take to dry 4 shirts of the same type that way simultanously? 

```
First, we need to understand the relationship between the number of shirts and the time it takes to dry them. Since the shirts are laid out flat on the ground, they have the same surface area exposed to the sun. This means that the drying time is directly proportional to the number of shirts.

Step 1: Identify the given information.
- Time to dry 2 shirts: 5 hours
- Number of shirts: 2

Step 2: Set up a proportion to represent the relationship between the number of shirts and the time it takes to dry them.
- Let x be the time it takes to dry 4 shirts.
- We can write the proportion as:

(2 shirts / 5 hours) = (4 shirts / x)

Step 3: Solve for x.
- To solve for x, we can cross-multiply:

2 shirts * x = 5 hours * 4 shirts

- Simplify the equation:

2x = 20 shirt-hours

- Now, divide both sides by 2 to isolate x:

x = 10 hours

So, it would take 10 hours to dry 4 shirts of the same type simultaneously.

The answer is: 10.
```
Wrong, should be 5


explain step by step 25-4*2+3=?
```
First, we need to follow the order of operations (PEMDAS/BODMAS), which stands for Parentheses/Brackets, Exponents/Orders, Multiplication and Division, and Addition and Subtraction. This means we should perform the operations inside the parentheses first, then the exponents, then the multiplication and division, and finally the addition and subtraction.

Here's the given expression: 25 - 4 * 2 + 3

Step 1: Perform the multiplication operation inside the parentheses.
25 - (4 * 2) + 3

Step 2: Perform the multiplication operation.
25 - (8) + 3

Step 3: Now, we have a subtraction operation and an addition operation. Since they have the same precedence, we can perform them from left to right.
25 - 8 + 3

Step 4: Perform the subtraction operation.
17 + 3

Step 5: Perform the addition operation.
20

So, the final answer is 20.

The answer is: the final answer is 20.
```

## Prompt template

```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
```

or for CoT (❗For the simple math questions, we do NOT recommend to use the CoT prompt.)

```
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
```

## Eval

```python
{
    "all": {
        "acc": 0.6868282613819305,
        "acc_stderr": 0.030371866427473967,
        "acc_norm": 0.695311288530275,
        "acc_norm_stderr": 0.030984285786669577,
        "mc1": 0.36964504283965727,
        "mc1_stderr": 0.01689818070697388,
        "mc2": 0.5360987678643523,
        "mc2_stderr": 0.014938153988985473
    },
    "harness|arc:challenge|25": {
        "acc": 0.6424914675767918,
        "acc_stderr": 0.014005494275916573,
        "acc_norm": 0.6851535836177475,
        "acc_norm_stderr": 0.01357265770308495
    },
    "harness|hellaswag|10": {
        "acc": 0.6836287592113125,
        "acc_stderr": 0.004641092001425294,
        "acc_norm": 0.8686516630153356,
        "acc_norm_stderr": 0.0033709059327855567
    },
    "harness|hendrycksTest-abstract_algebra|5": {
        "acc": 0.33,
        "acc_stderr": 0.04725815626252605,
        "acc_norm": 0.33,
        "acc_norm_stderr": 0.04725815626252605
    },
    "harness|hendrycksTest-anatomy|5": {
        "acc": 0.6222222222222222,
        "acc_stderr": 0.04188307537595852,
        "acc_norm": 0.6222222222222222,
        "acc_norm_stderr": 0.04188307537595852
    },
    "harness|hendrycksTest-astronomy|5": {
        "acc": 0.8026315789473685,
        "acc_stderr": 0.03238981601699397,
        "acc_norm": 0.8026315789473685,
        "acc_norm_stderr": 0.03238981601699397
    },
    "harness|hendrycksTest-business_ethics|5": {
        "acc": 0.72,
        "acc_stderr": 0.04512608598542127,
        "acc_norm": 0.72,
        "acc_norm_stderr": 0.04512608598542127
    },
    "harness|hendrycksTest-clinical_knowledge|5": {
        "acc": 0.7471698113207547,
        "acc_stderr": 0.026749899771241214,
        "acc_norm": 0.7471698113207547,
        "acc_norm_stderr": 0.026749899771241214
    },
    "harness|hendrycksTest-college_biology|5": {
        "acc": 0.8194444444444444,
        "acc_stderr": 0.032166008088022675,
        "acc_norm": 0.8194444444444444,
        "acc_norm_stderr": 0.032166008088022675
    },
    "harness|hendrycksTest-college_chemistry|5": {
        "acc": 0.48,
        "acc_stderr": 0.050211673156867795,
        "acc_norm": 0.48,
        "acc_norm_stderr": 0.050211673156867795
    },
    "harness|hendrycksTest-college_computer_science|5": {
        "acc": 0.57,
        "acc_stderr": 0.04975698519562428,
        "acc_norm": 0.57,
        "acc_norm_stderr": 0.04975698519562428
    },
    "harness|hendrycksTest-college_mathematics|5": {
        "acc": 0.33,
        "acc_stderr": 0.04725815626252604,
        "acc_norm": 0.33,
        "acc_norm_stderr": 0.04725815626252604
    },
    "harness|hendrycksTest-college_medicine|5": {
        "acc": 0.6647398843930635,
        "acc_stderr": 0.03599586301247077,
        "acc_norm": 0.6647398843930635,
        "acc_norm_stderr": 0.03599586301247077
    },
    "harness|hendrycksTest-college_physics|5": {
        "acc": 0.35294117647058826,
        "acc_stderr": 0.047551296160629475,
        "acc_norm": 0.35294117647058826,
        "acc_norm_stderr": 0.047551296160629475
    },
    "harness|hendrycksTest-computer_security|5": {
        "acc": 0.74,
        "acc_stderr": 0.04408440022768079,
        "acc_norm": 0.74,
        "acc_norm_stderr": 0.04408440022768079
    },
    "harness|hendrycksTest-conceptual_physics|5": {
        "acc": 0.6893617021276596,
        "acc_stderr": 0.03025123757921317,
        "acc_norm": 0.6893617021276596,
        "acc_norm_stderr": 0.03025123757921317
    },
    "harness|hendrycksTest-econometrics|5": {
        "acc": 0.40350877192982454,
        "acc_stderr": 0.046151869625837026,
        "acc_norm": 0.40350877192982454,
        "acc_norm_stderr": 0.046151869625837026
    },
    "harness|hendrycksTest-electrical_engineering|5": {
        "acc": 0.6068965517241379,
        "acc_stderr": 0.040703290137070705,
        "acc_norm": 0.6068965517241379,
        "acc_norm_stderr": 0.040703290137070705
    },
    "harness|hendrycksTest-elementary_mathematics|5": {
        "acc": 0.4312169312169312,
        "acc_stderr": 0.0255064816981382,
        "acc_norm": 0.4312169312169312,
        "acc_norm_stderr": 0.0255064816981382
    },
    "harness|hendrycksTest-formal_logic|5": {
        "acc": 0.5,
        "acc_stderr": 0.04472135954999579,
        "acc_norm": 0.5,
        "acc_norm_stderr": 0.04472135954999579
    },
    "harness|hendrycksTest-global_facts|5": {
        "acc": 0.43,
        "acc_stderr": 0.049756985195624284,
        "acc_norm": 0.43,
        "acc_norm_stderr": 0.049756985195624284
    },
    "harness|hendrycksTest-high_school_biology|5": {
        "acc": 0.8193548387096774,
        "acc_stderr": 0.021886178567172527,
        "acc_norm": 0.8193548387096774,
        "acc_norm_stderr": 0.021886178567172527
    },
    "harness|hendrycksTest-high_school_chemistry|5": {
        "acc": 0.5320197044334976,
        "acc_stderr": 0.03510766597959217,
        "acc_norm": 0.5320197044334976,
        "acc_norm_stderr": 0.03510766597959217
    },
    "harness|hendrycksTest-high_school_computer_science|5": {
        "acc": 0.71,
        "acc_stderr": 0.045604802157206845,
        "acc_norm": 0.71,
        "acc_norm_stderr": 0.045604802157206845
    },
    "harness|hendrycksTest-high_school_european_history|5": {
        "acc": 0.8121212121212121,
        "acc_stderr": 0.03050193405942914,
        "acc_norm": 0.8121212121212121,
        "acc_norm_stderr": 0.03050193405942914
    },
    "harness|hendrycksTest-high_school_geography|5": {
        "acc": 0.8888888888888888,
        "acc_stderr": 0.022390787638216773,
        "acc_norm": 0.8888888888888888,
        "acc_norm_stderr": 0.022390787638216773
    },
    "harness|hendrycksTest-high_school_government_and_politics|5": {
        "acc": 0.927461139896373,
        "acc_stderr": 0.018718998520678185,
        "acc_norm": 0.927461139896373,
        "acc_norm_stderr": 0.018718998520678185
    },
    "harness|hendrycksTest-high_school_macroeconomics|5": {
        "acc": 0.7230769230769231,
        "acc_stderr": 0.022688042352424994,
        "acc_norm": 0.7230769230769231,
        "acc_norm_stderr": 0.022688042352424994
    },
    "harness|hendrycksTest-high_school_mathematics|5": {
        "acc": 0.3333333333333333,
        "acc_stderr": 0.028742040903948492,
        "acc_norm": 0.3333333333333333,
        "acc_norm_stderr": 0.028742040903948492
    },
    "harness|hendrycksTest-high_school_microeconomics|5": {
        "acc": 0.8109243697478992,
        "acc_stderr": 0.02543511943810537,
        "acc_norm": 0.8109243697478992,
        "acc_norm_stderr": 0.02543511943810537
    },
    "harness|hendrycksTest-high_school_physics|5": {
        "acc": 0.4304635761589404,
        "acc_stderr": 0.04042809961395634,
        "acc_norm": 0.4304635761589404,
        "acc_norm_stderr": 0.04042809961395634
    },
    "harness|hendrycksTest-high_school_psychology|5": {
        "acc": 0.8862385321100917,
        "acc_stderr": 0.0136136148002328,
        "acc_norm": 0.8862385321100917,
        "acc_norm_stderr": 0.0136136148002328
    },
    "harness|hendrycksTest-high_school_statistics|5": {
        "acc": 0.5879629629629629,
        "acc_stderr": 0.03356787758160831,
        "acc_norm": 0.5879629629629629,
        "acc_norm_stderr": 0.03356787758160831
    },
    "harness|hendrycksTest-high_school_us_history|5": {
        "acc": 0.9166666666666666,
        "acc_stderr": 0.019398452135813895,
        "acc_norm": 0.9166666666666666,
        "acc_norm_stderr": 0.019398452135813895
    },
    "harness|hendrycksTest-high_school_world_history|5": {
        "acc": 0.8776371308016878,
        "acc_stderr": 0.02133174182974679,
        "acc_norm": 0.8776371308016878,
        "acc_norm_stderr": 0.02133174182974679
    },
    "harness|hendrycksTest-human_aging|5": {
        "acc": 0.8161434977578476,
        "acc_stderr": 0.025998379092356513,
        "acc_norm": 0.8161434977578476,
        "acc_norm_stderr": 0.025998379092356513
    },
    "harness|hendrycksTest-human_sexuality|5": {
        "acc": 0.8473282442748091,
        "acc_stderr": 0.03154521672005472,
        "acc_norm": 0.8473282442748091,
        "acc_norm_stderr": 0.03154521672005472
    },
    "harness|hendrycksTest-international_law|5": {
        "acc": 0.8512396694214877,
        "acc_stderr": 0.03248470083807194,
        "acc_norm": 0.8512396694214877,
        "acc_norm_stderr": 0.03248470083807194
    },
    "harness|hendrycksTest-jurisprudence|5": {
        "acc": 0.8148148148148148,
        "acc_stderr": 0.03755265865037181,
        "acc_norm": 0.8148148148148148,
        "acc_norm_stderr": 0.03755265865037181
    },
    "harness|hendrycksTest-logical_fallacies|5": {
        "acc": 0.803680981595092,
        "acc_stderr": 0.031207970394709225,
        "acc_norm": 0.803680981595092,
        "acc_norm_stderr": 0.031207970394709225
    },
    "harness|hendrycksTest-machine_learning|5": {
        "acc": 0.48214285714285715,
        "acc_stderr": 0.047427623612430116,
        "acc_norm": 0.48214285714285715,
        "acc_norm_stderr": 0.047427623612430116
    },
    "harness|hendrycksTest-management|5": {
        "acc": 0.8446601941747572,
        "acc_stderr": 0.03586594738573975,
        "acc_norm": 0.8446601941747572,
        "acc_norm_stderr": 0.03586594738573975
    },
    "harness|hendrycksTest-marketing|5": {
        "acc": 0.8846153846153846,
        "acc_stderr": 0.020930193185179333,
        "acc_norm": 0.8846153846153846,
        "acc_norm_stderr": 0.020930193185179333
    },
    "harness|hendrycksTest-medical_genetics|5": {
        "acc": 0.72,
        "acc_stderr": 0.045126085985421276,
        "acc_norm": 0.72,
        "acc_norm_stderr": 0.045126085985421276
    },
    "harness|hendrycksTest-miscellaneous|5": {
        "acc": 0.8620689655172413,
        "acc_stderr": 0.012331009307795663,
        "acc_norm": 0.8620689655172413,
        "acc_norm_stderr": 0.012331009307795663
    },
    "harness|hendrycksTest-moral_disputes|5": {
        "acc": 0.7745664739884393,
        "acc_stderr": 0.022497230190967558,
        "acc_norm": 0.7745664739884393,
        "acc_norm_stderr": 0.022497230190967558
    },
    "harness|hendrycksTest-moral_scenarios|5": {
        "acc": 0.5452513966480447,
        "acc_stderr": 0.016653875777523995,
        "acc_norm": 0.5452513966480447,
        "acc_norm_stderr": 0.016653875777523995
    },
    "harness|hendrycksTest-nutrition|5": {
        "acc": 0.7581699346405228,
        "acc_stderr": 0.024518195641879334,
        "acc_norm": 0.7581699346405228,
        "acc_norm_stderr": 0.024518195641879334
    },
    "harness|hendrycksTest-philosophy|5": {
        "acc": 0.7845659163987139,
        "acc_stderr": 0.023350225475471442,
        "acc_norm": 0.7845659163987139,
        "acc_norm_stderr": 0.023350225475471442
    },
    "harness|hendrycksTest-prehistory|5": {
        "acc": 0.8364197530864198,
        "acc_stderr": 0.02058146613825712,
        "acc_norm": 0.8364197530864198,
        "acc_norm_stderr": 0.02058146613825712
    },
    "harness|hendrycksTest-professional_accounting|5": {
        "acc": 0.5177304964539007,
        "acc_stderr": 0.02980873964223777,
        "acc_norm": 0.5177304964539007,
        "acc_norm_stderr": 0.02980873964223777
    },
    "harness|hendrycksTest-professional_law|5": {
        "acc": 0.5658409387222947,
        "acc_stderr": 0.012659033237067253,
        "acc_norm": 0.5658409387222947,
        "acc_norm_stderr": 0.012659033237067253
    },
    "harness|hendrycksTest-professional_medicine|5": {
        "acc": 0.7683823529411765,
        "acc_stderr": 0.025626533803777562,
        "acc_norm": 0.7683823529411765,
        "acc_norm_stderr": 0.025626533803777562
    },
    "harness|hendrycksTest-professional_psychology|5": {
        "acc": 0.7532679738562091,
        "acc_stderr": 0.0174408203674025,
        "acc_norm": 0.7532679738562091,
        "acc_norm_stderr": 0.0174408203674025
    },
    "harness|hendrycksTest-public_relations|5": {
        "acc": 0.7272727272727273,
        "acc_stderr": 0.04265792110940588,
        "acc_norm": 0.7272727272727273,
        "acc_norm_stderr": 0.04265792110940588
    },
    "harness|hendrycksTest-security_studies|5": {
        "acc": 0.8,
        "acc_stderr": 0.02560737598657916,
        "acc_norm": 0.8,
        "acc_norm_stderr": 0.02560737598657916
    },
    "harness|hendrycksTest-sociology|5": {
        "acc": 0.8955223880597015,
        "acc_stderr": 0.021628920516700643,
        "acc_norm": 0.8955223880597015,
        "acc_norm_stderr": 0.021628920516700643
    },
    "harness|hendrycksTest-us_foreign_policy|5": {
        "acc": 0.93,
        "acc_stderr": 0.0256432399976243,
        "acc_norm": 0.93,
        "acc_norm_stderr": 0.0256432399976243
    },
    "harness|hendrycksTest-virology|5": {
        "acc": 0.5240963855421686,
        "acc_stderr": 0.03887971849597264,
        "acc_norm": 0.5240963855421686,
        "acc_norm_stderr": 0.03887971849597264
    },
    "harness|hendrycksTest-world_religions|5": {
        "acc": 0.8654970760233918,
        "acc_stderr": 0.026168221344662297,
        "acc_norm": 0.8654970760233918,
        "acc_norm_stderr": 0.026168221344662297
    },
    "harness|truthfulqa:mc|0": {
        "mc1": 0.36964504283965727,
        "mc1_stderr": 0.01689818070697388,
        "mc2": 0.5360987678643523,
        "mc2_stderr": 0.014938153988985473
    },
    "harness|winogrande|5": {
        "acc": 0.8271507498026835,
        "acc_stderr": 0.010626964529971855
    },
    "harness|gsm8k|5": {
        "acc": 0.27369219105382864,
        "acc_stderr": 0.012281003490963456
    }
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__WizardLM-Math-70B-TIES-v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |64.72|
|AI2 Reasoning Challenge (25-Shot)|68.52|
|HellaSwag (10-Shot)              |86.87|
|MMLU (5-Shot)                    |69.24|
|TruthfulQA (0-shot)              |53.61|
|Winogrande (5-shot)              |82.72|
|GSM8k (5-shot)                   |27.37|