--- language: - en license: llama3 library_name: transformers tags: - axolotl - finetune - dpo - facebook - meta - pytorch - llama - llama-3 - chatml base_model: meta-llama/Meta-Llama-3-70B-Instruct datasets: - argilla/ultrafeedback-binarized-preferences pipeline_tag: text-generation license_name: llama3 license_link: LICENSE inference: false model_creator: MaziyarPanahi quantized_by: MaziyarPanahi model-index: - name: Llama-3-70B-Instruct-DPO-v0.4 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.03 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 80.5 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.26 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 87.34 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 50.27 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 48.4 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 22.66 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 11.97 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 13.1 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 46.71 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 name: Open LLM Leaderboard --- Llama-3 DPO Logo # MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4 This model is a fine-tune (DPO) of `meta-llama/Meta-Llama-3-70B-Instruct` model. # ⚡ Quantized GGUF All GGUF models are available here: [MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4-GGUF](https://huggingface.co/MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4-GGUF) # 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__Llama-3-70B-Instruct-DPO-v0.4) | Metric |Value| |-------------------|----:| |Avg. |32.18| |IFEval (0-Shot) |50.27| |BBH (3-Shot) |48.40| |MATH Lvl 5 (4-Shot)|22.66| |GPQA (0-shot) |11.97| |MuSR (0-shot) |13.10| |MMLU-PRO (5-shot) |46.71| | Metric |Value| |---------------------------------|----:| |Avg. |78.89| |AI2 Reasoning Challenge (25-Shot)|72.61| |HellaSwag (10-Shot) |86.03| |MMLU (5-Shot) |80.50| |TruthfulQA (0-shot) |63.26| |Winogrande (5-shot) |83.58| |GSM8k (5-shot) |87.34| **Top 10 models on the Leaderboard** Llama-3-70B finet-tuned models # Prompt Template This model uses `ChatML` prompt template: ``` <|im_start|>system {System} <|im_end|> <|im_start|>user {User} <|im_end|> <|im_start|>assistant {Assistant} ```` # How to use You can use this model by using `MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4` as the model name in Hugging Face's transformers library. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer from transformers import pipeline import torch model_id = "MaziyarPanahi/Llama-3-70B-Instruct-DPO-v0.4" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, # attn_implementation="flash_attention_2" ) tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True ) streamer = TextStreamer(tokenizer) pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, streamer=streamer ) # Then you can use the pipeline to generate text. messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>"), tokenizer.convert_tokens_to_ids("<|eot_id|>") # safer to have this too ] outputs = pipeline( prompt, max_new_tokens=2048, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.95, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## Sample Response ``` <|im_start|>system You are a helpful assistant.<|im_end|> <|im_start|>user describe about pros and cons of docker system.<|im_end|> <|im_start|>assistant ``` ``` Here are the pros and cons of the Docker system: **Pros:** 1. **Lightweight**: Docker containers are lightweight and use fewer resources compared to traditional virtual machines. 2. **Isolation**: Docker provides a high level of isolation between containers, ensuring that each application runs independently without interfering with others. 3. **Portability**: Docker containers are highly portable and can run on any system that supports Docker, without requiring specific dependencies or configurations. 4. **Efficient Use of Resources**: Docker containers can share the same kernel and use fewer resources, making them more efficient than traditional virtual machines. 5. **Fast Deployment**: Docker containers can be spun up quickly, making it ideal for rapid deployment and scaling of applications. 6. **Easy Maintenance**: Docker provides a simple way to manage and update applications, with features like rolling updates and rollbacks. 7. **Security**: Docker provides a secure environment for applications, with features like network isolation and encryption. 8. **Large Ecosystem**: Docker has a large and active ecosystem, with a wide range of tools and plugins available for various tasks. 9. **Version Control**: Docker provides an easy way to manage different versions of an application, with features like version tagging and rollbacks. 10. **Cost-Effective**: Docker can help reduce costs by minimizing the need for virtual machines and reducing the overhead of resource allocation. **Cons:** 1. **Steep Learning Curve**: Docker has a complex architecture and requires a good understanding of containerization, networking, and storage. 2. **Overhead**: While Docker containers are lightweight, they still require some overhead in terms of resources and management. 3. **Security Risks**: If not properly configured, Docker containers can introduce security risks, such as unauthorized access to the host system. 4. **Limited Support for GUI Applications**: Docker is primarily designed for running command-line applications, and running GUI applications can be challenging. 5. **Networking Complexity**: Docker's networking model can be complex, especially in large-scale deployments. 6. **Storage Complexity**: Docker's storage model can be complex, especially when dealing with persistent data. 7. **Limited Support for Legacy Applications**: Docker is designed for modern, cloud-native applications, and may not be suitable for legacy applications that rely on older technologies. 8. **Dependence on Docker Hub**: Docker relies heavily on Docker Hub, which can be a single point of failure if the hub is down or experiencing issues. 9. **Orchestration Complexity**: Docker provides a built-in orchestration tool, Docker Swarm, but it can be complex to set up and manage. 10. **Vendor Lock-in**: Docker is a proprietary technology, and while it has a large ecosystem, it can be difficult to switch to alternative containerization platforms. Overall, Docker provides a powerful and flexible way to deploy and manage applications, but it requires careful planning, configuration, and management to ensure optimal performance and security. ```