McCheng commited on
Commit
e89559d
1 Parent(s): fa64113

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 289.20 +/- 16.92
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 261.80 +/- 70.13
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7dbfc9f0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7dbfc9f170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7dbfc9f200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7dbfc9f290>", "_build": "<function ActorCriticPolicy._build at 0x7f7dbfc9f320>", "forward": "<function ActorCriticPolicy.forward at 0x7f7dbfc9f3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7dbfc9f440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7dbfc9f4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7dbfc9f560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7dbfc9f5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7dbfc9f680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7dbfc9f710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7dbfceaab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 10223616, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678374462670862000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQgAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0BLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIACAAAAOzvPIf1Nj84PLS7IdZpv0kMMD2d0mC8AAAAAAAAAAAzLWO8nMaMP46VXb3zJGC/bmGCvfTLnb0AAAAAAAAAAM1T0bwU3JS6G0PONFvMBzAgP726Jub1swAAgD8AAIA/5hinPTGYaD7zzxm+E4MBvwp/4j3vIYG9AAAAAAAAAAAzd/K84ZyxukberTZEYaAxHfYNOgWrxbUAAIA/AACAP5ooR70Uf9E7ppX4PU+7Wb4WlDM+KBSBvwAAAAAAAIA/mlsnPEhjjbrqouw261/YMRmBCbrEYwm2AACAPwAAgD+a5dC89sxsuiMrUDe/mNEy04V6uWIYb7YAAIA/AACAP+qikz6BLA0/ss04vpcM2L4V4LA+khJpvgAAAAAAAAAAzcxeOEj1grrrVbC38/5Ms7pZODu9N8g2AACAPwAAgD/A3UE+e8TLPuiDe74UcwG/GtpYPosx+70AAAAAAAAAAC20Qz6LIi8/QzSIPQR1IL93qbI+9ZKgvQAAAAAAAAAAMwv/vDk5JD9iSeY8KZNlvwjOSb1GpI09AAAAAAAAAAAA+hq8XC9qugv7TDnem7wz6lsSux2KbrgAAIA/AACAP7OzOT1I4es31MlGs4Ca1K+FoX87aIvNMwAAgD8AAIA/mhN3PHSTqz0W0Ty9Lv2cvuOauTxAIVu9AAAAAAAAAABNqXw9BHC9PTHkFr2JP6G+qqu0PdO6wbwAAAAAAAAAAJp2Aj0eBKs/0+kBPysEH79qIQ68lpGRPQAAAAAAAAAAmhfWPYi+yD0IBrC+YWzRvmlUebxDBKq+AAAAAAAAAAAAKuk9PvmCPeFpkr6sibe+Q4rfvZMwML4AAAAAAAAAALMXET17bra6KmBAOzkJjzzmx865u5d4PQAAgD8AAIA/Zkb2Oml4ELxgWlE+FfvqOuqUkbyGErm9AACAPwAAgD8zwKO8rmWKujvKWzJPxzOv8PqTuX0NEbMAAIA/AACAP6YtrL0t8+Y+aJEiPSrJMr/epwK+nfOQPQAAAAAAAAAA5k/kvWAzvT9tze6+vPMBvjl+aL6FH9y+AAAAAAAAAAAzF7M7FHyFumfJRT0idhq5bbC6OhrVE7gAAIA/AACAPwDp6Twfedw6an5Avk5rSb6HhoG9W1d5PwAAgD8AAAAARvccPtxu8j7dc/G9+q8gv+bOdz5k1y6+AAAAAAAAAAAatwC9yJ+CvFMJDz2wVso83FLuvYokoD0AAIA/AACAP2Zm8jo9G2m7Y7XTvM9vozx/BZs8KHqLvQAAgD8AAIA/mtf3vHdUrj8biha/sP/5vmIwcjwRw7K8AAAAAAAAAACAqxe9xJG6P6LHfb5Tbsy8wNGEveV9D74AAAAAAAAAAM3mnLxe+K8/YvW4vkD0v77oeJG5Gqm1vQAAAAAAAAAAACC8uwWI4rtDR047NuKFPHEsRD06HWK9AACAPwAAgD/NIKy76ue0P1c2CL9PFts9Ba3HOzPV9j0AAAAAAAAAABoiLr1InaQ/jJScvk5IHL/JPpa9MTuVvgAAAAAAAAAAk2YbPu+UYT7mV/K+d5nuvtkFYT02RJG+AAAAAAAAAABm7qg7dlQmvL7Rg70lotm9+uOXPMPhDz8AAIA/AACAP5oinT3JzLU/6e+IPqxFsb62BBU+q0nfPQAAAAAAAAAAjTUPPncYOD7lN+++tH3XvgqIyr0wtpu+AAAAAAAAAADN2N47FHyduoqRnTzFSAgxzQ68Oickt7MAAIA/AACAPwB0F72mbMk+frudPfY+Nb+dkmW9dpoqPQAAAAAAAAAAM9PNOvZGfDtQf1w+myo+vsKkGz7ix1m/AAAAAAAAgD9mELQ8vCeyP+4s2D7BfmS+Cy3pu0ovQj0AAAAAAAAAAFqdOb5DOOo+lRdsPp5PN7/eWZC+6niTPgAAAAAAAAAAyoVyvo+Qaz9bzKU9erIov8GR8742ci0+AAAAAAAAAAAAmbe8e26VujOhujaiGMIxjgZduk3x2bUAAIA/AACAP5rZ7LmjQ7g+QPSlPbcTML+zpNY85/UJPgAAAAAAAAAA5mqkvXsuoj/V42m+DgEhv6ZhYL70lQi+AAAAAAAAAAAAsAC7bILMuwLzKLyra308ebYbPfOSWb0AAIA/AACAP03iWb0ONaM/kjTIvpZaJr93omC95G2QvgAAAAAAAAAAmheCvK5glj8q5Vy9J3E8v+aHY73mBgq9AAAAAAAAAAAg1R2+KMqWPsW5sj5enyC/r6cNvUagXT4AAAAAAAAAAACk57spHCu6o0uXujMEXTR/EKm7pJiwOQAAgD8AAIA/ICdCvnlUDj9mNZ4989Q1v2Qn2L7Zyos+AAAAAAAAAADmcK49j/9IPSLerb6Gyrm+OxfUvcIzIL4AAAAAAAAAAM0Oh7zu6qc/Bd1+ve7JAL87tV+94tQbvQAAAAAAAAAAjdvTPRXOQz576w2/XN3KvoFjYr7T2s6+AAAAAAAAAACaiZM6Zn2UPx6SBzsHZUm/HUAAvLuv1jsAAAAAAAAAAEaWKr7rSnE/TfVxvucqH79d6Ni+ruHavQAAAAAAAAAAwGrPPZyllj4+6Ye+TVUZv5H1UT1ipUa+AAAAAAAAAAAa/C69KUwKulKz5T1imHK5tawUu2DUc7gAAIA/AACAP6BYfT6dx14/KI9UvfFcKr8ppdc+orLSvQAAAAAAAAAAwClNPocjXD85k4M9Oww6vzBRuD65P4y9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVyAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0CFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02236159999999998, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4uoAiHsecUCUhpRSlIwBbJRLoIwBdJRHQLQA7i7kGRp1fZQoaAZoCWgPQwjtYS8U8LJwQJSGlFKUaBVLuGgWR0C0APObNKRMdX2UKGgGaAloD0MITn0geWcSckCUhpRSlGgVS8JoFkdAtAD2nuRcNnV9lChoBmgJaA9DCEZ6UbsfznFAlIaUUpRoFUuwaBZHQLQA+2/BWPt1fZQoaAZoCWgPQwiBJsKGJ59yQJSGlFKUaBVLnGgWR0C0ARGUr08OdX2UKGgGaAloD0MI3CqIga6CcECUhpRSlGgVS6doFkdAtAEUDYAbQ3V9lChoBmgJaA9DCMfYCS8BB3JAlIaUUpRoFUutaBZHQLQBHx3FDOV1fZQoaAZoCWgPQwg66ui4mkVxQJSGlFKUaBVLnWgWR0C0ASfB7/n4dX2UKGgGaAloD0MIHSCYowf7cUCUhpRSlGgVS7poFkdAtAEpVjqfOHV9lChoBmgJaA9DCOOMYU4QUnJAlIaUUpRoFUuyaBZHQLQBKUYsNDt1fZQoaAZoCWgPQwiiQnVz8f1wQJSGlFKUaBVLzWgWR0C0AUgCKaXsdX2UKGgGaAloD0MIeEZblcTIcUCUhpRSlGgVS6BoFkdAtAFSnk1dgXV9lChoBmgJaA9DCLSR66bUmXNAlIaUUpRoFUuxaBZHQLQBWkwN9Yx1fZQoaAZoCWgPQwjJkGPrWSlxQJSGlFKUaBVLsGgWR0C0AWEWl/H6dX2UKGgGaAloD0MIW+7MBIMhdECUhpRSlGgVS91oFkdAtAFnCfpUxXV9lChoBmgJaA9DCPje36B9jHNAlIaUUpRoFUvLaBZHQLQBccsUZel1fZQoaAZoCWgPQwgr+dhdIIJzQJSGlFKUaBVLv2gWR0C0AXpPRArydX2UKGgGaAloD0MICRhd3lxlckCUhpRSlGgVS8NoFkdAtAF41m8M/nV9lChoBmgJaA9DCJPjTung0m9AlIaUUpRoFUuPaBZHQLQBjZZB9kV1fZQoaAZoCWgPQwhPWOIBpYlyQJSGlFKUaBVLwGgWR0C0AZZdWyTqdX2UKGgGaAloD0MItMcL6XBgcUCUhpRSlGgVS7RoFkdAtAGjAuZkTnV9lChoBmgJaA9DCHdLcsCuRHFAlIaUUpRoFUuraBZHQLQBrYnv2Gt1fZQoaAZoCWgPQwgEHhhAOHRyQJSGlFKUaBVLsGgWR0C0AbZKFqSHdX2UKGgGaAloD0MIqFMe3QgPckCUhpRSlGgVS9hoFkdAtAHJgmZ3LXV9lChoBmgJaA9DCIJWYMgqEXNAlIaUUpRoFUu/aBZHQLQB7fs/pt91fZQoaAZoCWgPQwht/fSftUdyQJSGlFKUaBVLv2gWR0C0Ae4Bq9GrdX2UKGgGaAloD0MIkpT0MLR4ckCUhpRSlGgVS5poFkdAtAHxTOxB3XV9lChoBmgJaA9DCMFXdOt1/nNAlIaUUpRoFUu4aBZHQLQCBh3qzJJ1fZQoaAZoCWgPQwjMRBFSN8VzQJSGlFKUaBVL3GgWR0C0AggTh5xBdX2UKGgGaAloD0MIT1d3LHYwcUCUhpRSlGgVS7BoFkdAtAISb5M10nV9lChoBmgJaA9DCG/XS1NE0nJAlIaUUpRoFUuYaBZHQLQCJYZEUj91fZQoaAZoCWgPQwiSlzWxwAdxQJSGlFKUaBVLrWgWR0C0Ai69sabXdX2UKGgGaAloD0MIk/yIX3EVc0CUhpRSlGgVS8JoFkdAtAIzSYw7DHV9lChoBmgJaA9DCNzxJr+FtXBAlIaUUpRoFUuoaBZHQLQCMoKD0191fZQoaAZoCWgPQwiHUKVmDxNyQJSGlFKUaBVLn2gWR0C0AjJdKNADdX2UKGgGaAloD0MIonprYOuNc0CUhpRSlGgVS7JoFkdAtAJEwQDmsHV9lChoBmgJaA9DCGX+0TepJ3NAlIaUUpRoFUu8aBZHQLQCWTHbRF91fZQoaAZoCWgPQwiFQZlGE4JyQJSGlFKUaBVLwGgWR0C0AmF4xDb8dX2UKGgGaAloD0MI8KZbdkjHcUCUhpRSlGgVS7xoFkdAtAJl1IRRM3V9lChoBmgJaA9DCI2WAz2U2nJAlIaUUpRoFUu5aBZHQLQCal5WzWx1fZQoaAZoCWgPQwj/zCA+8J9wQJSGlFKUaBVLpWgWR0C0Amz5TIeYdX2UKGgGaAloD0MIW+7MBENIb0CUhpRSlGgVS6NoFkdAtAKB7/n4f3V9lChoBmgJaA9DCCkkmdW7HXBAlIaUUpRoFUulaBZHQLQCiyiEg4h1fZQoaAZoCWgPQwiA8KFEi2dyQJSGlFKUaBVLzGgWR0C0ApaV2Rq5dX2UKGgGaAloD0MIrOXOTPCLcUCUhpRSlGgVS7VoFkdAtAKczzmOl3V9lChoBmgJaA9DCK+ZfLNNF3FAlIaUUpRoFUuraBZHQLQCn4wAU+N1fZQoaAZoCWgPQwhbJO1GXyRyQJSGlFKUaBVLvWgWR0C0AqNTYNAkdX2UKGgGaAloD0MI6e46GzI/cUCUhpRSlGgVS51oFkdAtAKpM6BAfXV9lChoBmgJaA9DCBUCucQRa3NAlIaUUpRoFUu6aBZHQLQCqCgbp/x1fZQoaAZoCWgPQwgmHHqLh0xyQJSGlFKUaBVLxmgWR0C0ArXirDIjdX2UKGgGaAloD0MI598u+/WQb0CUhpRSlGgVS5VoFkdAtAK9Aprk83V9lChoBmgJaA9DCEtYG2PnSHNAlIaUUpRoFUvFaBZHQLQCxquKXOZ1fZQoaAZoCWgPQwgkfVpFf79xQJSGlFKUaBVLm2gWR0C0Asaf8MuwdX2UKGgGaAloD0MIHsGNlK2ncUCUhpRSlGgVS6poFkdAtALYn1Fpf3V9lChoBmgJaA9DCE62gTuQ0XFAlIaUUpRoFUucaBZHQLQC+NRFZxJ1fZQoaAZoCWgPQwg3OBH9WjpxQJSGlFKUaBVLoGgWR0C0AvwkcCHRdX2UKGgGaAloD0MIL75ojxeOckCUhpRSlGgVS/BoFkdAtAMBCswL3XV9lChoBmgJaA9DCJqw/WSMgnJAlIaUUpRoFUvBaBZHQLQDFBMzuWt1fZQoaAZoCWgPQwgtCOV9HJBvQJSGlFKUaBVLtmgWR0C0AxjX8O0+dX2UKGgGaAloD0MIDi+ISE1xcECUhpRSlGgVS7ZoFkdAtAMdOXVslHV9lChoBmgJaA9DCF1sWinEGnFAlIaUUpRoFUubaBZHQLQDJBmf5DZ1fZQoaAZoCWgPQwgV5dL4xaZyQJSGlFKUaBVLxmgWR0C0Ayd4zJp4dX2UKGgGaAloD0MIgsr495n/ckCUhpRSlGgVS85oFkdAtAM4mplz2nV9lChoBmgJaA9DCJLKFHOQ8XBAlIaUUpRoFUvNaBZHQLQDPOKfnOl1fZQoaAZoCWgPQwhmvRjKSRFwQJSGlFKUaBVLtmgWR0C0A0LOVxCIdX2UKGgGaAloD0MIuYrFb0oXcUCUhpRSlGgVS61oFkdAtANGVnmJWXV9lChoBmgJaA9DCAuYwK37DnNAlIaUUpRoFUuWaBZHQLQDV+YtxuN1fZQoaAZoCWgPQwjmrboOFQZyQJSGlFKUaBVLyWgWR0C0A1ngk1MudX2UKGgGaAloD0MIfCjRkocccUCUhpRSlGgVS6hoFkdAtANv/vOQhnV9lChoBmgJaA9DCGAhc2UQY3NAlIaUUpRoFUu8aBZHQLQDgA9mpVF1fZQoaAZoCWgPQwgG9phIKW5yQJSGlFKUaBVLu2gWR0C0A4SpeeFtdX2UKGgGaAloD0MIOs5twr16dECUhpRSlGgVS9doFkdAtAOEUQCjlHV9lChoBmgJaA9DCFqcMczJ1nNAlIaUUpRoFUvRaBZHQLQDjB6rvLJ1fZQoaAZoCWgPQwg2rKksyhdyQJSGlFKUaBVLxmgWR0C0A4/1QIlddX2UKGgGaAloD0MIq8yU1t86ckCUhpRSlGgVS7VoFkdAtAOP08NhE3V9lChoBmgJaA9DCMefqGzYNXJAlIaUUpRoFUvTaBZHQLQDlHi3ocJ1fZQoaAZoCWgPQwjBkNWtnktxQJSGlFKUaBVLrmgWR0C0A5eT3Zf2dX2UKGgGaAloD0MIGCR9WoWmcECUhpRSlGgVS8RoFkdAtAOgVM23rnV9lChoBmgJaA9DCA2OklcnHnJAlIaUUpRoFUusaBZHQLQDoyp71I11fZQoaAZoCWgPQwiumueIfPpwQJSGlFKUaBVLuWgWR0C0A6vUe+23dX2UKGgGaAloD0MI53KDoQ50cUCUhpRSlGgVS49oFkdAtAOyunuRcXV9lChoBmgJaA9DCMBZSpYTnHNAlIaUUpRoFUuoaBZHQLQDsjdHlOp1fZQoaAZoCWgPQwgkCcIVEAVzQJSGlFKUaBVLvWgWR0C0A70jxCpndX2UKGgGaAloD0MIEMr7OJoIc0CUhpRSlGgVS7loFkdAtAPKoWHk93V9lChoBmgJaA9DCEpFY+1vJ3NAlIaUUpRoFUvEaBZHQLQD+jX4CZF1fZQoaAZoCWgPQwjH1F3ZxS1xQJSGlFKUaBVLv2gWR0C0BArZvkzXdX2UKGgGaAloD0MIQrEVNO0ic0CUhpRSlGgVS8doFkdAtAQZScbzb3V9lChoBmgJaA9DCGlSCro95nBAlIaUUpRoFUueaBZHQLQEHIo3Jgd1fZQoaAZoCWgPQwgjhbLwtfBzQJSGlFKUaBVLv2gWR0C0BCMfV7QcdX2UKGgGaAloD0MIFHXmHpKhcUCUhpRSlGgVS6NoFkdAtAQxh2GIsXV9lChoBmgJaA9DCMB7R42JPHFAlIaUUpRoFUuwaBZHQLQEMt16mfp1fZQoaAZoCWgPQwhkXdxGg8NxQJSGlFKUaBVLpWgWR0C0BDc/yGzsdX2UKGgGaAloD0MItRoS99gXb0CUhpRSlGgVS7ZoFkdAtAROExqO93V9lChoBmgJaA9DCAsL7gd8AXFAlIaUUpRoFUuoaBZHQLQEVVzIV/N1fZQoaAZoCWgPQwhF1ESfD7xxQJSGlFKUaBVLoGgWR0C0BFUT6BRRdX2UKGgGaAloD0MIXU90XXgFc0CUhpRSlGgVS8hoFkdAtARnmHP/rHV9lChoBmgJaA9DCIeL3NPVFnNAlIaUUpRoFUu5aBZHQLQEayAQQMB1fZQoaAZoCWgPQwjQRxlxATxyQJSGlFKUaBVLwmgWR0C0BGszMzMzdX2UKGgGaAloD0MInBn9aDjxcUCUhpRSlGgVS5FoFkdAtARq+dsi0XV9lChoBmgJaA9DCDF72XYaxHNAlIaUUpRoFUu6aBZHQLQEenwXqJN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 624, "n_steps": 4096, "gamma": 0.9995, "gae_lambda": 0.99, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-debian-bullseye-sid # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7dbfc9f0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7dbfc9f170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7dbfc9f200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7dbfc9f290>", "_build": "<function ActorCriticPolicy._build at 0x7f7dbfc9f320>", "forward": "<function ActorCriticPolicy.forward at 0x7f7dbfc9f3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7dbfc9f440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7dbfc9f4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7dbfc9f560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7dbfc9f5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7dbfc9f680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7dbfc9f710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7dbfceaab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 200015872, "_total_timesteps": 200000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678409737008144743, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQgAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0BLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIACAAAzZ48PoIL+j4rqzG+dCwivz2gxz77fgS+AAAAAAAAAABTkDs+7XATP5Y4lr2hwR6/4PLKPrt7t7wAAAAAAAAAAABcvLvc31e8rkoIPa3CAz0+m3Q9B9eTuwAAgD8AAIA/AFO0PLJgpz9VmXE+2fQqvwyY/Dxi318+AAAAAAAAAADNPFu79mwhukfTSjb89bGwAc26un5BcLUAAIA/AACAP80r0bw4W+C7GH6CvdP6nL5wF729KBUXPwAAgD8AAAAAMy9qvI+eaLoe9Og9dg6ROIi2k7tASo43AACAPwAAgD8NA8G94UPYPcWceD6HxfC+aOvxvdh8tT0AAAAAAAAAAJO6VT4I0LM/lUIOP1yj4b6m2f0+o/0LPwAAAAAAAAAAAPXJvAWb9rvuYTQ+eWLePHheH707Ilo8AACAPwAAgD/NLJm6FCCWulAunLaCQeixUT/dOUz9tDUAAIA/AACAPwBcJjzhBI+67JgGtvLlGLFWQ9A6m1wdNQAAgD8AAIA/DQyMvcxNkT4ah4w9TEktv6Ni571iqnQ9AAAAAAAAAAAAWzo+HpmRPtLQ876BhjG/EQ1IPoN81L4AAAAAAAAAAACUajzcD3+8Vsk9vny+cD1q94c9cKy3vAAAgD8AAIA/YC8UPhIGkD+2ag4/lNAdv9KsOj4aNak+AAAAAAAAAACAO8292EiPP8N1376cYEm/ANlPvjzNu74AAAAAAAAAABPjaz5ajGw/VhOcPo3jKL+aBwk/k2P4PQAAAAAAAAAAUBdsvmOQKT9dgmi97qkIv6P86r6rgMa9AAAAAAAAAAAADAK90SyQPbuOQrzarPe+8xLXvW+8kL0AAAAAAAAAAPNho72rELU/QXwbv6GzB75wGvG8yOqJvgAAAAAAAAAAzSozvB2jGj9Wt527rVFqv9rhAL1O5kM8AAAAAAAAAACtHFs+u3f2Ph72jr5cv2K/ZJSmPhWXpr4AAAAAAAAAAGY2rby4gYK7VaxLPkVwuzyqN1m8xxC4vAAAgD8AAIA/xkAXPomuHz8F6u89LBJOv9YErj7oZoq8AAAAAAAAAACalcq8SJuFuq2Eprph2g225DRLO55hvzkAAIA/AACAPzY5iD4ZUZc/xkjbPrwlJb+70zE/Y+wTPgAAAAAAAAAAmgZCvTYrQz0W5is+YnLWvpe8fr0StTY9AAAAAAAAAACakaK7XHtauo5cP7IqQ9wwiL2fuqomjjIAAIA/AACAPzPvlLucFDC8tuOnvEBwwjytQam9HtmdPQAAgD8AAIA/zZBPPGaOsj8styg+8DE5vmYWGTrSGog9AAAAAAAAAADNVo8+ZhkxPwyjhLzxOuq+AaUvPwunfz4AAAAAAAAAABNOPr4SGnU/qkR0vgMTXb99Yu6+KSSFPQAAAAAAAAAATdYRPfuytj+yH2Q+XOYMvnQ9+LwIrtk8AAAAAAAAAABm1mq7SPeJuo8NhjlLQ8I04j5LO1cpmrgAAIA/AACAP2bQEzxWNFM97e7tvTta7r53vbM8ZWv0vQAAAAAAAAAAmhm5ua5jg7raxp41Hh1CMEEMFjsqKq20AACAPwAAgD/AveS95N3ePR4OfT71kOa+RAmavdN6GT4AAAAAAAAAANr5qb38gjY/oO77vZxXYb/SwWO+NoF6vAAAAAAAAAAA5gCVvYgUNz99dNm9JXhqv1uLTL4/okU8AAAAAAAAAAAzfyu8ITWuP8gN2r1nwrS+GqftvNyzub0AAAAAAAAAADO/j7speGi6UB0auDpUFrOqGkc779A0NwAAgD8AAIA/zcw4uSlMPbpJPrC2ZX0OskHZ5rrwd881AACAPwAAgD8AejS8PQlFu0KvCT4wwqc8gEp3vB5qjz0AAIA/AACAPyDWcr4bElg/5jVyvr+N3L4DEvG+mV+xvgAAAAAAAAAAOmQQvqzlFj768b4+DQgEv2hXu71wp4M+AAAAAAAAAACz4DI9UhbBu7AdcL5lIMQ8BGQgPb0bpL0AAIA/AACAP8byij5fumg/vn+kPjqZBr/g/fE+MDZSPgAAAAAAAAAAZtpFvsQLij6Y+c8+tagev6mrP74WuZk+AAAAAAAAAABmbNS9a7qNP/IStb6fMEO/XrWUvhOTVL4AAAAAAAAAAPOm9b2+5Ms9Nte/PrnR976dXx69jW+PPgAAAAAAAAAADaARviOJOT/e8Re+t/NOv7Ibsr50QAk7AAAAAAAAAADNnnS8Y6dBPx3bd72SQ3+//HvjvHPpU70AAAAAAAAAAFoijD2kgOg+eRoivbG/Vb/SvvA9SwylvQAAAAAAAAAAAKhEO+EIrT/lNU89exIBvy0zX7ssmDm8AAAAAAAAAADNDLS5XBsYvCVIhb2plf48EADMvOb9sbsAAIA/AACAP80ioDwJLT89E2AKvjRfz77YZOs7BokDvQAAAAAAAAAAmsnuOkgThro8drG2AFGGsdQKebjgxNA1AACAPwAAgD/AbsM9rLqvP5UTdj6lEgC/isDMPp18mz4AAAAAAAAAAM1QKbwhtoi81rSYPaXIQD1Ej4K9Hd54PQAAgD8AAIA/MyMMO1wjfLqqaiyz8D4vsDVmezr6H9AzAACAPwAAgD8a4By9PjLRPfXzCD4pP/6+KLXvvB3loT0AAAAAAAAAAHNf9D1K2RQ+1bIMv7JqDL/bUeq9C2+2vgAAAAAAAAAAmkFXvI9qXbqw9iY7RfwoM56TKbu73lMzAACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVyAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0CFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -7.935999999997279e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL8A+OvXBb0CUhpRSlIwBbJRLpowBdJRHQPv7bQ7JW/91fZQoaAZoCWgPQwjzWZ4Ht9lwQJSGlFKUaBVLomgWR0D7+21LB9CvdX2UKGgGaAloD0MIgEi/fV3pcECUhpRSlGgVS59oFkdA+/ttTKkl/3V9lChoBmgJaA9DCH4BvXAnvXJAlIaUUpRoFUu+aBZHQPv7boa4tpV1fZQoaAZoCWgPQwgpzeZx2LlyQJSGlFKUaBVLtmgWR0D7+28PNmlJdX2UKGgGaAloD0MI0sQ7wBPsckCUhpRSlGgVS7xoFkdA+/tvSHEdenV9lChoBmgJaA9DCDNqvkq+33FAlIaUUpRoFUuxaBZHQPv7b5kOI691fZQoaAZoCWgPQwgS+wRQzLFxQJSGlFKUaBVLqGgWR0D7+2/83uNQdX2UKGgGaAloD0MI4PQu3g+DcECUhpRSlGgVS+xoFkdA+/twytA9m3V9lChoBmgJaA9DCGNfsvHgMHNAlIaUUpRoFUu2aBZHQPv7cMQkHD91fZQoaAZoCWgPQwj9hokGKfhxQJSGlFKUaBVLvmgWR0D7+3ELcsUZdX2UKGgGaAloD0MIob/QI0bhcUCUhpRSlGgVS5ZoFkdA+/txRFI/aHV9lChoBmgJaA9DCFFrmndcBnJAlIaUUpRoFUugaBZHQPv7cXPRiPR1fZQoaAZoCWgPQwgDste7/w9zQJSGlFKUaBVLr2gWR0D7+3U4d6sydX2UKGgGaAloD0MIUUzeADPPcUCUhpRSlGgVS69oFkdA+/t1jpC8e3V9lChoBmgJaA9DCK+w4H7A73NAlIaUUpRoFUuxaBZHQPv7doNayKN1fZQoaAZoCWgPQwh3TN2VHVlxQJSGlFKUaBVLtWgWR0D7+3aD8tPIdX2UKGgGaAloD0MITDYebDFLb0CUhpRSlGgVS7VoFkdA+/t2fDHfdnV9lChoBmgJaA9DCI3xYfayj3JAlIaUUpRoFUuXaBZHQPv7dwE/0NB1fZQoaAZoCWgPQwj0UrExL51wQJSGlFKUaBVLpmgWR0D7+3fLA57xdX2UKGgGaAloD0MIG9e/6/MHcECUhpRSlGgVS6xoFkdA+/t3yNfgJnV9lChoBmgJaA9DCKuVCb/UqnFAlIaUUpRoFUujaBZHQPv7d8WO6up1fZQoaAZoCWgPQwhEh8CRgDBxQJSGlFKUaBVLq2gWR0D7+3gCaqjrdX2UKGgGaAloD0MIQX3LnK6dc0CUhpRSlGgVS8VoFkdA+/t4hAOav3V9lChoBmgJaA9DCIejq3Q36nBAlIaUUpRoFUugaBZHQPv7eUXO4Xp1fZQoaAZoCWgPQwjE0VW6e/9yQJSGlFKUaBVLvGgWR0D7+3l0Syt3dX2UKGgGaAloD0MIlYCYhEtCcUCUhpRSlGgVS7hoFkdA+/t6w9A5aXV9lChoBmgJaA9DCDVgkPRp93FAlIaUUpRoFUuvaBZHQPv7esCbMHN1fZQoaAZoCWgPQwhFSN3OvhhyQJSGlFKUaBVLqmgWR0D7+3tQrMC+dX2UKGgGaAloD0MIFaqbiz+RcECUhpRSlGgVS6loFkdA+/t7Q8bJfnV9lChoBmgJaA9DCKVquwk+R3JAlIaUUpRoFUvAaBZHQPv7fqo86mx1fZQoaAZoCWgPQwiESlzHOG5zQJSGlFKUaBVLvWgWR0D7+37mvW6LdX2UKGgGaAloD0MIpkV9kvsFdECUhpRSlGgVS7JoFkdA+/t/MIu5BnV9lChoBmgJaA9DCBxClZr9YXJAlIaUUpRoFUu2aBZHQPv7f6dJ8OV1fZQoaAZoCWgPQwilLhnHCOJxQJSGlFKUaBVLtGgWR0D7+4L7WuoxdX2UKGgGaAloD0MI6nWLwNiAcUCUhpRSlGgVS9FoFkdA+/uC7haTwHV9lChoBmgJaA9DCKs/wjBgrXJAlIaUUpRoFUvCaBZHQPv7gyiO/+N1fZQoaAZoCWgPQwgHflTD/txxQJSGlFKUaBVLrmgWR0D7+4R+5OJtdX2UKGgGaAloD0MIiV5GsRxdckCUhpRSlGgVS7BoFkdA+/uGg1m8NHV9lChoBmgJaA9DCH2R0Jbz/3BAlIaUUpRoFUupaBZHQPv7hsR+SbJ1fZQoaAZoCWgPQwjiBKbTOl1yQJSGlFKUaBVLt2gWR0D7+4dcZccEdX2UKGgGaAloD0MI4jsx60W6ckCUhpRSlGgVS6NoFkdA+/uIM1baAXV9lChoBmgJaA9DCI5cN6W8bXJAlIaUUpRoFUuWaBZHQPv7idCiRGN1fZQoaAZoCWgPQwivITguI95wQJSGlFKUaBVLiWgWR0D7+4nPAwfydX2UKGgGaAloD0MIOJ7PgPqscUCUhpRSlGgVS7loFkdA+/uKsCcPOXV9lChoBmgJaA9DCAbWcfwQrXJAlIaUUpRoFUuQaBZHQPv7iwV0tAd1fZQoaAZoCWgPQwi0d0ZbFW5zQJSGlFKUaBVLwWgWR0D7+4s6RyOrdX2UKGgGaAloD0MImtL6W4KFc0CUhpRSlGgVS7NoFkdA+/uL9YfW+XV9lChoBmgJaA9DCOLmVDIAL3JAlIaUUpRoFUumaBZHQPv7i+wjdHl1fZQoaAZoCWgPQwhwzR3977ByQJSGlFKUaBVLtWgWR0D7+4vk0JnhdX2UKGgGaAloD0MIXvdWJOYSdECUhpRSlGgVS7hoFkdA+/uOTLjgh3V9lChoBmgJaA9DCNMuppnuoHJAlIaUUpRoFUuaaBZHQPv7jpgDzRR1fZQoaAZoCWgPQwjd0mpIXAdzQJSGlFKUaBVLqGgWR0D7+5CDiOvMdX2UKGgGaAloD0MIYr68AHvgc0CUhpRSlGgVS75oFkdA+/uQtlEqlXV9lChoBmgJaA9DCPJ7m/7s+XJAlIaUUpRoFUucaBZHQPv7kox46fd1fZQoaAZoCWgPQwhfC3pvzDhzQJSGlFKUaBVLoGgWR0D7+5N79hqkdX2UKGgGaAloD0MID9B9ObOPcUCUhpRSlGgVS5hoFkdA+/uUKyv9tXV9lChoBmgJaA9DCPrwLEGGPXFAlIaUUpRoFU0yA2gWR0D7+5T4o7V8dX2UKGgGaAloD0MIvyuC/20ccUCUhpRSlGgVS8BoFkdA+/uWGYfGMnV9lChoBmgJaA9DCLOZQ1JLm3FAlIaUUpRoFUuzaBZHQPv7lrGBFux1fZQoaAZoCWgPQwgUBmUaDXVyQJSGlFKUaBVLq2gWR0D7+5bXqqwRdX2UKGgGaAloD0MIV5dTAuIKc0CUhpRSlGgVS7JoFkdA+/uXI3zcynV9lChoBmgJaA9DCH+HokBf6XJAlIaUUpRoFUunaBZHQPv7lyPJaJR1fZQoaAZoCWgPQwh8LH3oQuxxQJSGlFKUaBVLrmgWR0D7+5dtYB/7dX2UKGgGaAloD0MIPXyZKIJHc0CUhpRSlGgVS7loFkdA+/uYObutwXV9lChoBmgJaA9DCBMsDmc+qnNAlIaUUpRoFUvOaBZHQPv7mPH3lCF1fZQoaAZoCWgPQwiPG343HWhxQJSGlFKUaBVLrWgWR0D7+5kxaPjodX2UKGgGaAloD0MIBrth22KScECUhpRSlGgVS6RoFkdA+/uZWLYPG3V9lChoBmgJaA9DCA69xcN7MnNAlIaUUpRoFUvKaBZHQPv7mrN6gNB1fZQoaAZoCWgPQwhN9PkoI7txQJSGlFKUaBVLsGgWR0D7+5r4n4O+dX2UKGgGaAloD0MIGAXB41vcckCUhpRSlGgVS5toFkdA+/ubcUZeiXV9lChoBmgJaA9DCDm4dMx5jXNAlIaUUpRoFUuyaBZHQPv7nC9YfXB1fZQoaAZoCWgPQwjKF7SQwMZzQJSGlFKUaBVLwmgWR0D7+5ydGAkLdX2UKGgGaAloD0MIW+z2WeVxckCUhpRSlGgVS49oFkdA+/ueaDkELnV9lChoBmgJaA9DCAA6zJeX+XJAlIaUUpRoFUvAaBZHQPv7n6AAhjh1fZQoaAZoCWgPQwg3xeOi2opzQJSGlFKUaBVLxWgWR0D7+6ETisGQdX2UKGgGaAloD0MIgsmNImt2c0CUhpRSlGgVS8xoFkdA+/uhB+OOsHV9lChoBmgJaA9DCO8DkNpE+nNAlIaUUpRoFUuqaBZHQPv7oZiPQv91fZQoaAZoCWgPQwi1T8djxiJyQJSGlFKUaBVLyWgWR0D7+6JUqQRxdX2UKGgGaAloD0MI4SU49cEAckCUhpRSlGgVS6loFkdA+/uitK7I1nV9lChoBmgJaA9DCNCc9SmHYHJAlIaUUpRoFUu6aBZHQPv7ozlV94N1fZQoaAZoCWgPQwg6W0BofdByQJSGlFKUaBVLk2gWR0D7+6Mya/h3dX2UKGgGaAloD0MIWOcYkH2tckCUhpRSlGgVS6poFkdA+/ujMc2itnV9lChoBmgJaA9DCKORzyse73JAlIaUUpRoFUu3aBZHQPv7o3Imw7l1fZQoaAZoCWgPQwjgLCXLib1wQJSGlFKUaBVLsmgWR0D7+6PoqCpWdX2UKGgGaAloD0MI5WTiVkF/cECUhpRSlGgVS7toFkdA+/ukIMBp6HV9lChoBmgJaA9DCET5ghaSznBAlIaUUpRoFUuXaBZHQPv7pBxKg7J1fZQoaAZoCWgPQwg0ZhL1AnByQJSGlFKUaBVLiGgWR0D7+6RUDMePdX2UKGgGaAloD0MILqwb704+dECUhpRSlGgVS8BoFkdA+/ulOsgdO3V9lChoBmgJaA9DCLqHhO/9ZnJAlIaUUpRoFUu6aBZHQPv7pTx6OYJ1fZQoaAZoCWgPQwiM8zehkF10QJSGlFKUaBVLvWgWR0D7+6WzQu27dX2UKGgGaAloD0MIG4NOCF3rc0CUhpRSlGgVS8VoFkdA+/um792ovXV9lChoBmgJaA9DCBy0Vx8PVnNAlIaUUpRoFUvIaBZHQPv7qFwCKaZ1fZQoaAZoCWgPQwhjtmRVBKxwQJSGlFKUaBVLp2gWR0D7+6iMOPNndX2UKGgGaAloD0MIUWuad1x0cECUhpRSlGgVS5poFkdA+/up/XwsoXV9lChoBmgJaA9DCONPVDYst3JAlIaUUpRoFUvGaBZHQPv7qsQPI4l1fZQoaAZoCWgPQwhHkbWG0rpyQJSGlFKUaBVLmWgWR0D7+6uTz/ZNdX2UKGgGaAloD0MIGCE82niXc0CUhpRSlGgVS6doFkdA+/ur1zQu3HV9lChoBmgJaA9DCOSFdHjIWHFAlIaUUpRoFUunaBZHQPv7rAS13MZ1fZQoaAZoCWgPQwjZPuQtl/ZxQJSGlFKUaBVLlWgWR0D7+6w8PWhAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12832, "n_steps": 4096, "gamma": 0.9995, "gae_lambda": 0.99, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-debian-bullseye-sid # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:62f7e836f31889bec3bafbec03344b4a0b61cfdc69836c6b0d23dd8c416c0a8a
3
- size 149543
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eebb5f2e8b9c20b25aeb6e14375c930f53098f399925abee8f87a6d4e6531118
3
+ size 149549
ppo-LunarLander-v2/data CHANGED
@@ -43,12 +43,12 @@
43
  "_np_random": null
44
  },
45
  "n_envs": 64,
46
- "num_timesteps": 10223616,
47
- "_total_timesteps": 10000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1678374462670862000,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,26 +57,26 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gASVjQgAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0BLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIACAAAAOzvPIf1Nj84PLS7IdZpv0kMMD2d0mC8AAAAAAAAAAAzLWO8nMaMP46VXb3zJGC/bmGCvfTLnb0AAAAAAAAAAM1T0bwU3JS6G0PONFvMBzAgP726Jub1swAAgD8AAIA/5hinPTGYaD7zzxm+E4MBvwp/4j3vIYG9AAAAAAAAAAAzd/K84ZyxukberTZEYaAxHfYNOgWrxbUAAIA/AACAP5ooR70Uf9E7ppX4PU+7Wb4WlDM+KBSBvwAAAAAAAIA/mlsnPEhjjbrqouw261/YMRmBCbrEYwm2AACAPwAAgD+a5dC89sxsuiMrUDe/mNEy04V6uWIYb7YAAIA/AACAP+qikz6BLA0/ss04vpcM2L4V4LA+khJpvgAAAAAAAAAAzcxeOEj1grrrVbC38/5Ms7pZODu9N8g2AACAPwAAgD/A3UE+e8TLPuiDe74UcwG/GtpYPosx+70AAAAAAAAAAC20Qz6LIi8/QzSIPQR1IL93qbI+9ZKgvQAAAAAAAAAAMwv/vDk5JD9iSeY8KZNlvwjOSb1GpI09AAAAAAAAAAAA+hq8XC9qugv7TDnem7wz6lsSux2KbrgAAIA/AACAP7OzOT1I4es31MlGs4Ca1K+FoX87aIvNMwAAgD8AAIA/mhN3PHSTqz0W0Ty9Lv2cvuOauTxAIVu9AAAAAAAAAABNqXw9BHC9PTHkFr2JP6G+qqu0PdO6wbwAAAAAAAAAAJp2Aj0eBKs/0+kBPysEH79qIQ68lpGRPQAAAAAAAAAAmhfWPYi+yD0IBrC+YWzRvmlUebxDBKq+AAAAAAAAAAAAKuk9PvmCPeFpkr6sibe+Q4rfvZMwML4AAAAAAAAAALMXET17bra6KmBAOzkJjzzmx865u5d4PQAAgD8AAIA/Zkb2Oml4ELxgWlE+FfvqOuqUkbyGErm9AACAPwAAgD8zwKO8rmWKujvKWzJPxzOv8PqTuX0NEbMAAIA/AACAP6YtrL0t8+Y+aJEiPSrJMr/epwK+nfOQPQAAAAAAAAAA5k/kvWAzvT9tze6+vPMBvjl+aL6FH9y+AAAAAAAAAAAzF7M7FHyFumfJRT0idhq5bbC6OhrVE7gAAIA/AACAPwDp6Twfedw6an5Avk5rSb6HhoG9W1d5PwAAgD8AAAAARvccPtxu8j7dc/G9+q8gv+bOdz5k1y6+AAAAAAAAAAAatwC9yJ+CvFMJDz2wVso83FLuvYokoD0AAIA/AACAP2Zm8jo9G2m7Y7XTvM9vozx/BZs8KHqLvQAAgD8AAIA/mtf3vHdUrj8biha/sP/5vmIwcjwRw7K8AAAAAAAAAACAqxe9xJG6P6LHfb5Tbsy8wNGEveV9D74AAAAAAAAAAM3mnLxe+K8/YvW4vkD0v77oeJG5Gqm1vQAAAAAAAAAAACC8uwWI4rtDR047NuKFPHEsRD06HWK9AACAPwAAgD/NIKy76ue0P1c2CL9PFts9Ba3HOzPV9j0AAAAAAAAAABoiLr1InaQ/jJScvk5IHL/JPpa9MTuVvgAAAAAAAAAAk2YbPu+UYT7mV/K+d5nuvtkFYT02RJG+AAAAAAAAAABm7qg7dlQmvL7Rg70lotm9+uOXPMPhDz8AAIA/AACAP5oinT3JzLU/6e+IPqxFsb62BBU+q0nfPQAAAAAAAAAAjTUPPncYOD7lN+++tH3XvgqIyr0wtpu+AAAAAAAAAADN2N47FHyduoqRnTzFSAgxzQ68Oickt7MAAIA/AACAPwB0F72mbMk+frudPfY+Nb+dkmW9dpoqPQAAAAAAAAAAM9PNOvZGfDtQf1w+myo+vsKkGz7ix1m/AAAAAAAAgD9mELQ8vCeyP+4s2D7BfmS+Cy3pu0ovQj0AAAAAAAAAAFqdOb5DOOo+lRdsPp5PN7/eWZC+6niTPgAAAAAAAAAAyoVyvo+Qaz9bzKU9erIov8GR8742ci0+AAAAAAAAAAAAmbe8e26VujOhujaiGMIxjgZduk3x2bUAAIA/AACAP5rZ7LmjQ7g+QPSlPbcTML+zpNY85/UJPgAAAAAAAAAA5mqkvXsuoj/V42m+DgEhv6ZhYL70lQi+AAAAAAAAAAAAsAC7bILMuwLzKLyra308ebYbPfOSWb0AAIA/AACAP03iWb0ONaM/kjTIvpZaJr93omC95G2QvgAAAAAAAAAAmheCvK5glj8q5Vy9J3E8v+aHY73mBgq9AAAAAAAAAAAg1R2+KMqWPsW5sj5enyC/r6cNvUagXT4AAAAAAAAAAACk57spHCu6o0uXujMEXTR/EKm7pJiwOQAAgD8AAIA/ICdCvnlUDj9mNZ4989Q1v2Qn2L7Zyos+AAAAAAAAAADmcK49j/9IPSLerb6Gyrm+OxfUvcIzIL4AAAAAAAAAAM0Oh7zu6qc/Bd1+ve7JAL87tV+94tQbvQAAAAAAAAAAjdvTPRXOQz576w2/XN3KvoFjYr7T2s6+AAAAAAAAAACaiZM6Zn2UPx6SBzsHZUm/HUAAvLuv1jsAAAAAAAAAAEaWKr7rSnE/TfVxvucqH79d6Ni+ruHavQAAAAAAAAAAwGrPPZyllj4+6Ye+TVUZv5H1UT1ipUa+AAAAAAAAAAAa/C69KUwKulKz5T1imHK5tawUu2DUc7gAAIA/AACAP6BYfT6dx14/KI9UvfFcKr8ppdc+orLSvQAAAAAAAAAAwClNPocjXD85k4M9Oww6vzBRuD65P4y9AAAAAAAAAACUdJRiLg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
- ":serialized:": "gASVyAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0CFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
65
  },
66
  "_last_original_obs": null,
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
- "_current_progress_remaining": -0.02236159999999998,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4uoAiHsecUCUhpRSlIwBbJRLoIwBdJRHQLQA7i7kGRp1fZQoaAZoCWgPQwjtYS8U8LJwQJSGlFKUaBVLuGgWR0C0APObNKRMdX2UKGgGaAloD0MITn0geWcSckCUhpRSlGgVS8JoFkdAtAD2nuRcNnV9lChoBmgJaA9DCEZ6UbsfznFAlIaUUpRoFUuwaBZHQLQA+2/BWPt1fZQoaAZoCWgPQwiBJsKGJ59yQJSGlFKUaBVLnGgWR0C0ARGUr08OdX2UKGgGaAloD0MI3CqIga6CcECUhpRSlGgVS6doFkdAtAEUDYAbQ3V9lChoBmgJaA9DCMfYCS8BB3JAlIaUUpRoFUutaBZHQLQBHx3FDOV1fZQoaAZoCWgPQwg66ui4mkVxQJSGlFKUaBVLnWgWR0C0ASfB7/n4dX2UKGgGaAloD0MIHSCYowf7cUCUhpRSlGgVS7poFkdAtAEpVjqfOHV9lChoBmgJaA9DCOOMYU4QUnJAlIaUUpRoFUuyaBZHQLQBKUYsNDt1fZQoaAZoCWgPQwiiQnVz8f1wQJSGlFKUaBVLzWgWR0C0AUgCKaXsdX2UKGgGaAloD0MIeEZblcTIcUCUhpRSlGgVS6BoFkdAtAFSnk1dgXV9lChoBmgJaA9DCLSR66bUmXNAlIaUUpRoFUuxaBZHQLQBWkwN9Yx1fZQoaAZoCWgPQwjJkGPrWSlxQJSGlFKUaBVLsGgWR0C0AWEWl/H6dX2UKGgGaAloD0MIW+7MBIMhdECUhpRSlGgVS91oFkdAtAFnCfpUxXV9lChoBmgJaA9DCPje36B9jHNAlIaUUpRoFUvLaBZHQLQBccsUZel1fZQoaAZoCWgPQwgr+dhdIIJzQJSGlFKUaBVLv2gWR0C0AXpPRArydX2UKGgGaAloD0MICRhd3lxlckCUhpRSlGgVS8NoFkdAtAF41m8M/nV9lChoBmgJaA9DCJPjTung0m9AlIaUUpRoFUuPaBZHQLQBjZZB9kV1fZQoaAZoCWgPQwhPWOIBpYlyQJSGlFKUaBVLwGgWR0C0AZZdWyTqdX2UKGgGaAloD0MItMcL6XBgcUCUhpRSlGgVS7RoFkdAtAGjAuZkTnV9lChoBmgJaA9DCHdLcsCuRHFAlIaUUpRoFUuraBZHQLQBrYnv2Gt1fZQoaAZoCWgPQwgEHhhAOHRyQJSGlFKUaBVLsGgWR0C0AbZKFqSHdX2UKGgGaAloD0MIqFMe3QgPckCUhpRSlGgVS9hoFkdAtAHJgmZ3LXV9lChoBmgJaA9DCIJWYMgqEXNAlIaUUpRoFUu/aBZHQLQB7fs/pt91fZQoaAZoCWgPQwht/fSftUdyQJSGlFKUaBVLv2gWR0C0Ae4Bq9GrdX2UKGgGaAloD0MIkpT0MLR4ckCUhpRSlGgVS5poFkdAtAHxTOxB3XV9lChoBmgJaA9DCMFXdOt1/nNAlIaUUpRoFUu4aBZHQLQCBh3qzJJ1fZQoaAZoCWgPQwjMRBFSN8VzQJSGlFKUaBVL3GgWR0C0AggTh5xBdX2UKGgGaAloD0MIT1d3LHYwcUCUhpRSlGgVS7BoFkdAtAISb5M10nV9lChoBmgJaA9DCG/XS1NE0nJAlIaUUpRoFUuYaBZHQLQCJYZEUj91fZQoaAZoCWgPQwiSlzWxwAdxQJSGlFKUaBVLrWgWR0C0Ai69sabXdX2UKGgGaAloD0MIk/yIX3EVc0CUhpRSlGgVS8JoFkdAtAIzSYw7DHV9lChoBmgJaA9DCNzxJr+FtXBAlIaUUpRoFUuoaBZHQLQCMoKD0191fZQoaAZoCWgPQwiHUKVmDxNyQJSGlFKUaBVLn2gWR0C0AjJdKNADdX2UKGgGaAloD0MIonprYOuNc0CUhpRSlGgVS7JoFkdAtAJEwQDmsHV9lChoBmgJaA9DCGX+0TepJ3NAlIaUUpRoFUu8aBZHQLQCWTHbRF91fZQoaAZoCWgPQwiFQZlGE4JyQJSGlFKUaBVLwGgWR0C0AmF4xDb8dX2UKGgGaAloD0MI8KZbdkjHcUCUhpRSlGgVS7xoFkdAtAJl1IRRM3V9lChoBmgJaA9DCI2WAz2U2nJAlIaUUpRoFUu5aBZHQLQCal5WzWx1fZQoaAZoCWgPQwj/zCA+8J9wQJSGlFKUaBVLpWgWR0C0Amz5TIeYdX2UKGgGaAloD0MIW+7MBENIb0CUhpRSlGgVS6NoFkdAtAKB7/n4f3V9lChoBmgJaA9DCCkkmdW7HXBAlIaUUpRoFUulaBZHQLQCiyiEg4h1fZQoaAZoCWgPQwiA8KFEi2dyQJSGlFKUaBVLzGgWR0C0ApaV2Rq5dX2UKGgGaAloD0MIrOXOTPCLcUCUhpRSlGgVS7VoFkdAtAKczzmOl3V9lChoBmgJaA9DCK+ZfLNNF3FAlIaUUpRoFUuraBZHQLQCn4wAU+N1fZQoaAZoCWgPQwhbJO1GXyRyQJSGlFKUaBVLvWgWR0C0AqNTYNAkdX2UKGgGaAloD0MI6e46GzI/cUCUhpRSlGgVS51oFkdAtAKpM6BAfXV9lChoBmgJaA9DCBUCucQRa3NAlIaUUpRoFUu6aBZHQLQCqCgbp/x1fZQoaAZoCWgPQwgmHHqLh0xyQJSGlFKUaBVLxmgWR0C0ArXirDIjdX2UKGgGaAloD0MI598u+/WQb0CUhpRSlGgVS5VoFkdAtAK9Aprk83V9lChoBmgJaA9DCEtYG2PnSHNAlIaUUpRoFUvFaBZHQLQCxquKXOZ1fZQoaAZoCWgPQwgkfVpFf79xQJSGlFKUaBVLm2gWR0C0Asaf8MuwdX2UKGgGaAloD0MIHsGNlK2ncUCUhpRSlGgVS6poFkdAtALYn1Fpf3V9lChoBmgJaA9DCE62gTuQ0XFAlIaUUpRoFUucaBZHQLQC+NRFZxJ1fZQoaAZoCWgPQwg3OBH9WjpxQJSGlFKUaBVLoGgWR0C0AvwkcCHRdX2UKGgGaAloD0MIL75ojxeOckCUhpRSlGgVS/BoFkdAtAMBCswL3XV9lChoBmgJaA9DCJqw/WSMgnJAlIaUUpRoFUvBaBZHQLQDFBMzuWt1fZQoaAZoCWgPQwgtCOV9HJBvQJSGlFKUaBVLtmgWR0C0AxjX8O0+dX2UKGgGaAloD0MIDi+ISE1xcECUhpRSlGgVS7ZoFkdAtAMdOXVslHV9lChoBmgJaA9DCF1sWinEGnFAlIaUUpRoFUubaBZHQLQDJBmf5DZ1fZQoaAZoCWgPQwgV5dL4xaZyQJSGlFKUaBVLxmgWR0C0Ayd4zJp4dX2UKGgGaAloD0MIgsr495n/ckCUhpRSlGgVS85oFkdAtAM4mplz2nV9lChoBmgJaA9DCJLKFHOQ8XBAlIaUUpRoFUvNaBZHQLQDPOKfnOl1fZQoaAZoCWgPQwhmvRjKSRFwQJSGlFKUaBVLtmgWR0C0A0LOVxCIdX2UKGgGaAloD0MIuYrFb0oXcUCUhpRSlGgVS61oFkdAtANGVnmJWXV9lChoBmgJaA9DCAuYwK37DnNAlIaUUpRoFUuWaBZHQLQDV+YtxuN1fZQoaAZoCWgPQwjmrboOFQZyQJSGlFKUaBVLyWgWR0C0A1ngk1MudX2UKGgGaAloD0MIfCjRkocccUCUhpRSlGgVS6hoFkdAtANv/vOQhnV9lChoBmgJaA9DCGAhc2UQY3NAlIaUUpRoFUu8aBZHQLQDgA9mpVF1fZQoaAZoCWgPQwgG9phIKW5yQJSGlFKUaBVLu2gWR0C0A4SpeeFtdX2UKGgGaAloD0MIOs5twr16dECUhpRSlGgVS9doFkdAtAOEUQCjlHV9lChoBmgJaA9DCFqcMczJ1nNAlIaUUpRoFUvRaBZHQLQDjB6rvLJ1fZQoaAZoCWgPQwg2rKksyhdyQJSGlFKUaBVLxmgWR0C0A4/1QIlddX2UKGgGaAloD0MIq8yU1t86ckCUhpRSlGgVS7VoFkdAtAOP08NhE3V9lChoBmgJaA9DCMefqGzYNXJAlIaUUpRoFUvTaBZHQLQDlHi3ocJ1fZQoaAZoCWgPQwjBkNWtnktxQJSGlFKUaBVLrmgWR0C0A5eT3Zf2dX2UKGgGaAloD0MIGCR9WoWmcECUhpRSlGgVS8RoFkdAtAOgVM23rnV9lChoBmgJaA9DCA2OklcnHnJAlIaUUpRoFUusaBZHQLQDoyp71I11fZQoaAZoCWgPQwiumueIfPpwQJSGlFKUaBVLuWgWR0C0A6vUe+23dX2UKGgGaAloD0MI53KDoQ50cUCUhpRSlGgVS49oFkdAtAOyunuRcXV9lChoBmgJaA9DCMBZSpYTnHNAlIaUUpRoFUuoaBZHQLQDsjdHlOp1fZQoaAZoCWgPQwgkCcIVEAVzQJSGlFKUaBVLvWgWR0C0A70jxCpndX2UKGgGaAloD0MIEMr7OJoIc0CUhpRSlGgVS7loFkdAtAPKoWHk93V9lChoBmgJaA9DCEpFY+1vJ3NAlIaUUpRoFUvEaBZHQLQD+jX4CZF1fZQoaAZoCWgPQwjH1F3ZxS1xQJSGlFKUaBVLv2gWR0C0BArZvkzXdX2UKGgGaAloD0MIQrEVNO0ic0CUhpRSlGgVS8doFkdAtAQZScbzb3V9lChoBmgJaA9DCGlSCro95nBAlIaUUpRoFUueaBZHQLQEHIo3Jgd1fZQoaAZoCWgPQwgjhbLwtfBzQJSGlFKUaBVLv2gWR0C0BCMfV7QcdX2UKGgGaAloD0MIFHXmHpKhcUCUhpRSlGgVS6NoFkdAtAQxh2GIsXV9lChoBmgJaA9DCMB7R42JPHFAlIaUUpRoFUuwaBZHQLQEMt16mfp1fZQoaAZoCWgPQwhkXdxGg8NxQJSGlFKUaBVLpWgWR0C0BDc/yGzsdX2UKGgGaAloD0MItRoS99gXb0CUhpRSlGgVS7ZoFkdAtAROExqO93V9lChoBmgJaA9DCAsL7gd8AXFAlIaUUpRoFUuoaBZHQLQEVVzIV/N1fZQoaAZoCWgPQwhF1ESfD7xxQJSGlFKUaBVLoGgWR0C0BFUT6BRRdX2UKGgGaAloD0MIXU90XXgFc0CUhpRSlGgVS8hoFkdAtARnmHP/rHV9lChoBmgJaA9DCIeL3NPVFnNAlIaUUpRoFUu5aBZHQLQEayAQQMB1fZQoaAZoCWgPQwjQRxlxATxyQJSGlFKUaBVLwmgWR0C0BGszMzMzdX2UKGgGaAloD0MInBn9aDjxcUCUhpRSlGgVS5FoFkdAtARq+dsi0XV9lChoBmgJaA9DCDF72XYaxHNAlIaUUpRoFUu6aBZHQLQEenwXqJN1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
- "_n_updates": 624,
80
  "n_steps": 4096,
81
  "gamma": 0.9995,
82
  "gae_lambda": 0.99,
 
43
  "_np_random": null
44
  },
45
  "n_envs": 64,
46
+ "num_timesteps": 200015872,
47
+ "_total_timesteps": 200000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1678409737008144743,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gASVjQgAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0BLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIACAAAzZ48PoIL+j4rqzG+dCwivz2gxz77fgS+AAAAAAAAAABTkDs+7XATP5Y4lr2hwR6/4PLKPrt7t7wAAAAAAAAAAABcvLvc31e8rkoIPa3CAz0+m3Q9B9eTuwAAgD8AAIA/AFO0PLJgpz9VmXE+2fQqvwyY/Dxi318+AAAAAAAAAADNPFu79mwhukfTSjb89bGwAc26un5BcLUAAIA/AACAP80r0bw4W+C7GH6CvdP6nL5wF729KBUXPwAAgD8AAAAAMy9qvI+eaLoe9Og9dg6ROIi2k7tASo43AACAPwAAgD8NA8G94UPYPcWceD6HxfC+aOvxvdh8tT0AAAAAAAAAAJO6VT4I0LM/lUIOP1yj4b6m2f0+o/0LPwAAAAAAAAAAAPXJvAWb9rvuYTQ+eWLePHheH707Ilo8AACAPwAAgD/NLJm6FCCWulAunLaCQeixUT/dOUz9tDUAAIA/AACAPwBcJjzhBI+67JgGtvLlGLFWQ9A6m1wdNQAAgD8AAIA/DQyMvcxNkT4ah4w9TEktv6Ni571iqnQ9AAAAAAAAAAAAWzo+HpmRPtLQ876BhjG/EQ1IPoN81L4AAAAAAAAAAACUajzcD3+8Vsk9vny+cD1q94c9cKy3vAAAgD8AAIA/YC8UPhIGkD+2ag4/lNAdv9KsOj4aNak+AAAAAAAAAACAO8292EiPP8N1376cYEm/ANlPvjzNu74AAAAAAAAAABPjaz5ajGw/VhOcPo3jKL+aBwk/k2P4PQAAAAAAAAAAUBdsvmOQKT9dgmi97qkIv6P86r6rgMa9AAAAAAAAAAAADAK90SyQPbuOQrzarPe+8xLXvW+8kL0AAAAAAAAAAPNho72rELU/QXwbv6GzB75wGvG8yOqJvgAAAAAAAAAAzSozvB2jGj9Wt527rVFqv9rhAL1O5kM8AAAAAAAAAACtHFs+u3f2Ph72jr5cv2K/ZJSmPhWXpr4AAAAAAAAAAGY2rby4gYK7VaxLPkVwuzyqN1m8xxC4vAAAgD8AAIA/xkAXPomuHz8F6u89LBJOv9YErj7oZoq8AAAAAAAAAACalcq8SJuFuq2Eprph2g225DRLO55hvzkAAIA/AACAPzY5iD4ZUZc/xkjbPrwlJb+70zE/Y+wTPgAAAAAAAAAAmgZCvTYrQz0W5is+YnLWvpe8fr0StTY9AAAAAAAAAACakaK7XHtauo5cP7IqQ9wwiL2fuqomjjIAAIA/AACAPzPvlLucFDC8tuOnvEBwwjytQam9HtmdPQAAgD8AAIA/zZBPPGaOsj8styg+8DE5vmYWGTrSGog9AAAAAAAAAADNVo8+ZhkxPwyjhLzxOuq+AaUvPwunfz4AAAAAAAAAABNOPr4SGnU/qkR0vgMTXb99Yu6+KSSFPQAAAAAAAAAATdYRPfuytj+yH2Q+XOYMvnQ9+LwIrtk8AAAAAAAAAABm1mq7SPeJuo8NhjlLQ8I04j5LO1cpmrgAAIA/AACAP2bQEzxWNFM97e7tvTta7r53vbM8ZWv0vQAAAAAAAAAAmhm5ua5jg7raxp41Hh1CMEEMFjsqKq20AACAPwAAgD/AveS95N3ePR4OfT71kOa+RAmavdN6GT4AAAAAAAAAANr5qb38gjY/oO77vZxXYb/SwWO+NoF6vAAAAAAAAAAA5gCVvYgUNz99dNm9JXhqv1uLTL4/okU8AAAAAAAAAAAzfyu8ITWuP8gN2r1nwrS+GqftvNyzub0AAAAAAAAAADO/j7speGi6UB0auDpUFrOqGkc779A0NwAAgD8AAIA/zcw4uSlMPbpJPrC2ZX0OskHZ5rrwd881AACAPwAAgD8AejS8PQlFu0KvCT4wwqc8gEp3vB5qjz0AAIA/AACAPyDWcr4bElg/5jVyvr+N3L4DEvG+mV+xvgAAAAAAAAAAOmQQvqzlFj768b4+DQgEv2hXu71wp4M+AAAAAAAAAACz4DI9UhbBu7AdcL5lIMQ8BGQgPb0bpL0AAIA/AACAP8byij5fumg/vn+kPjqZBr/g/fE+MDZSPgAAAAAAAAAAZtpFvsQLij6Y+c8+tagev6mrP74WuZk+AAAAAAAAAABmbNS9a7qNP/IStb6fMEO/XrWUvhOTVL4AAAAAAAAAAPOm9b2+5Ms9Nte/PrnR976dXx69jW+PPgAAAAAAAAAADaARviOJOT/e8Re+t/NOv7Ibsr50QAk7AAAAAAAAAADNnnS8Y6dBPx3bd72SQ3+//HvjvHPpU70AAAAAAAAAAFoijD2kgOg+eRoivbG/Vb/SvvA9SwylvQAAAAAAAAAAAKhEO+EIrT/lNU89exIBvy0zX7ssmDm8AAAAAAAAAADNDLS5XBsYvCVIhb2plf48EADMvOb9sbsAAIA/AACAP80ioDwJLT89E2AKvjRfz77YZOs7BokDvQAAAAAAAAAAmsnuOkgThro8drG2AFGGsdQKebjgxNA1AACAPwAAgD/AbsM9rLqvP5UTdj6lEgC/isDMPp18mz4AAAAAAAAAAM1QKbwhtoi81rSYPaXIQD1Ej4K9Hd54PQAAgD8AAIA/MyMMO1wjfLqqaiyz8D4vsDVmezr6H9AzAACAPwAAgD8a4By9PjLRPfXzCD4pP/6+KLXvvB3loT0AAAAAAAAAAHNf9D1K2RQ+1bIMv7JqDL/bUeq9C2+2vgAAAAAAAAAAmkFXvI9qXbqw9iY7RfwoM56TKbu73lMzAACAPwAAgD+UdJRiLg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gASVyAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0CFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
65
  },
66
  "_last_original_obs": null,
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -7.935999999997279e-05,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL8A+OvXBb0CUhpRSlIwBbJRLpowBdJRHQPv7bQ7JW/91fZQoaAZoCWgPQwjzWZ4Ht9lwQJSGlFKUaBVLomgWR0D7+21LB9CvdX2UKGgGaAloD0MIgEi/fV3pcECUhpRSlGgVS59oFkdA+/ttTKkl/3V9lChoBmgJaA9DCH4BvXAnvXJAlIaUUpRoFUu+aBZHQPv7boa4tpV1fZQoaAZoCWgPQwgpzeZx2LlyQJSGlFKUaBVLtmgWR0D7+28PNmlJdX2UKGgGaAloD0MI0sQ7wBPsckCUhpRSlGgVS7xoFkdA+/tvSHEdenV9lChoBmgJaA9DCDNqvkq+33FAlIaUUpRoFUuxaBZHQPv7b5kOI691fZQoaAZoCWgPQwgS+wRQzLFxQJSGlFKUaBVLqGgWR0D7+2/83uNQdX2UKGgGaAloD0MI4PQu3g+DcECUhpRSlGgVS+xoFkdA+/twytA9m3V9lChoBmgJaA9DCGNfsvHgMHNAlIaUUpRoFUu2aBZHQPv7cMQkHD91fZQoaAZoCWgPQwj9hokGKfhxQJSGlFKUaBVLvmgWR0D7+3ELcsUZdX2UKGgGaAloD0MIob/QI0bhcUCUhpRSlGgVS5ZoFkdA+/txRFI/aHV9lChoBmgJaA9DCFFrmndcBnJAlIaUUpRoFUugaBZHQPv7cXPRiPR1fZQoaAZoCWgPQwgDste7/w9zQJSGlFKUaBVLr2gWR0D7+3U4d6sydX2UKGgGaAloD0MIUUzeADPPcUCUhpRSlGgVS69oFkdA+/t1jpC8e3V9lChoBmgJaA9DCK+w4H7A73NAlIaUUpRoFUuxaBZHQPv7doNayKN1fZQoaAZoCWgPQwh3TN2VHVlxQJSGlFKUaBVLtWgWR0D7+3aD8tPIdX2UKGgGaAloD0MITDYebDFLb0CUhpRSlGgVS7VoFkdA+/t2fDHfdnV9lChoBmgJaA9DCI3xYfayj3JAlIaUUpRoFUuXaBZHQPv7dwE/0NB1fZQoaAZoCWgPQwj0UrExL51wQJSGlFKUaBVLpmgWR0D7+3fLA57xdX2UKGgGaAloD0MIG9e/6/MHcECUhpRSlGgVS6xoFkdA+/t3yNfgJnV9lChoBmgJaA9DCKuVCb/UqnFAlIaUUpRoFUujaBZHQPv7d8WO6up1fZQoaAZoCWgPQwhEh8CRgDBxQJSGlFKUaBVLq2gWR0D7+3gCaqjrdX2UKGgGaAloD0MIQX3LnK6dc0CUhpRSlGgVS8VoFkdA+/t4hAOav3V9lChoBmgJaA9DCIejq3Q36nBAlIaUUpRoFUugaBZHQPv7eUXO4Xp1fZQoaAZoCWgPQwjE0VW6e/9yQJSGlFKUaBVLvGgWR0D7+3l0Syt3dX2UKGgGaAloD0MIlYCYhEtCcUCUhpRSlGgVS7hoFkdA+/t6w9A5aXV9lChoBmgJaA9DCDVgkPRp93FAlIaUUpRoFUuvaBZHQPv7esCbMHN1fZQoaAZoCWgPQwhFSN3OvhhyQJSGlFKUaBVLqmgWR0D7+3tQrMC+dX2UKGgGaAloD0MIFaqbiz+RcECUhpRSlGgVS6loFkdA+/t7Q8bJfnV9lChoBmgJaA9DCKVquwk+R3JAlIaUUpRoFUvAaBZHQPv7fqo86mx1fZQoaAZoCWgPQwiESlzHOG5zQJSGlFKUaBVLvWgWR0D7+37mvW6LdX2UKGgGaAloD0MIpkV9kvsFdECUhpRSlGgVS7JoFkdA+/t/MIu5BnV9lChoBmgJaA9DCBxClZr9YXJAlIaUUpRoFUu2aBZHQPv7f6dJ8OV1fZQoaAZoCWgPQwilLhnHCOJxQJSGlFKUaBVLtGgWR0D7+4L7WuoxdX2UKGgGaAloD0MI6nWLwNiAcUCUhpRSlGgVS9FoFkdA+/uC7haTwHV9lChoBmgJaA9DCKs/wjBgrXJAlIaUUpRoFUvCaBZHQPv7gyiO/+N1fZQoaAZoCWgPQwgHflTD/txxQJSGlFKUaBVLrmgWR0D7+4R+5OJtdX2UKGgGaAloD0MIiV5GsRxdckCUhpRSlGgVS7BoFkdA+/uGg1m8NHV9lChoBmgJaA9DCH2R0Jbz/3BAlIaUUpRoFUupaBZHQPv7hsR+SbJ1fZQoaAZoCWgPQwjiBKbTOl1yQJSGlFKUaBVLt2gWR0D7+4dcZccEdX2UKGgGaAloD0MI4jsx60W6ckCUhpRSlGgVS6NoFkdA+/uIM1baAXV9lChoBmgJaA9DCI5cN6W8bXJAlIaUUpRoFUuWaBZHQPv7idCiRGN1fZQoaAZoCWgPQwivITguI95wQJSGlFKUaBVLiWgWR0D7+4nPAwfydX2UKGgGaAloD0MIOJ7PgPqscUCUhpRSlGgVS7loFkdA+/uKsCcPOXV9lChoBmgJaA9DCAbWcfwQrXJAlIaUUpRoFUuQaBZHQPv7iwV0tAd1fZQoaAZoCWgPQwi0d0ZbFW5zQJSGlFKUaBVLwWgWR0D7+4s6RyOrdX2UKGgGaAloD0MImtL6W4KFc0CUhpRSlGgVS7NoFkdA+/uL9YfW+XV9lChoBmgJaA9DCOLmVDIAL3JAlIaUUpRoFUumaBZHQPv7i+wjdHl1fZQoaAZoCWgPQwhwzR3977ByQJSGlFKUaBVLtWgWR0D7+4vk0JnhdX2UKGgGaAloD0MIXvdWJOYSdECUhpRSlGgVS7hoFkdA+/uOTLjgh3V9lChoBmgJaA9DCNMuppnuoHJAlIaUUpRoFUuaaBZHQPv7jpgDzRR1fZQoaAZoCWgPQwjd0mpIXAdzQJSGlFKUaBVLqGgWR0D7+5CDiOvMdX2UKGgGaAloD0MIYr68AHvgc0CUhpRSlGgVS75oFkdA+/uQtlEqlXV9lChoBmgJaA9DCPJ7m/7s+XJAlIaUUpRoFUucaBZHQPv7kox46fd1fZQoaAZoCWgPQwhfC3pvzDhzQJSGlFKUaBVLoGgWR0D7+5N79hqkdX2UKGgGaAloD0MID9B9ObOPcUCUhpRSlGgVS5hoFkdA+/uUKyv9tXV9lChoBmgJaA9DCPrwLEGGPXFAlIaUUpRoFU0yA2gWR0D7+5T4o7V8dX2UKGgGaAloD0MIvyuC/20ccUCUhpRSlGgVS8BoFkdA+/uWGYfGMnV9lChoBmgJaA9DCLOZQ1JLm3FAlIaUUpRoFUuzaBZHQPv7lrGBFux1fZQoaAZoCWgPQwgUBmUaDXVyQJSGlFKUaBVLq2gWR0D7+5bXqqwRdX2UKGgGaAloD0MIV5dTAuIKc0CUhpRSlGgVS7JoFkdA+/uXI3zcynV9lChoBmgJaA9DCH+HokBf6XJAlIaUUpRoFUunaBZHQPv7lyPJaJR1fZQoaAZoCWgPQwh8LH3oQuxxQJSGlFKUaBVLrmgWR0D7+5dtYB/7dX2UKGgGaAloD0MIPXyZKIJHc0CUhpRSlGgVS7loFkdA+/uYObutwXV9lChoBmgJaA9DCBMsDmc+qnNAlIaUUpRoFUvOaBZHQPv7mPH3lCF1fZQoaAZoCWgPQwiPG343HWhxQJSGlFKUaBVLrWgWR0D7+5kxaPjodX2UKGgGaAloD0MIBrth22KScECUhpRSlGgVS6RoFkdA+/uZWLYPG3V9lChoBmgJaA9DCA69xcN7MnNAlIaUUpRoFUvKaBZHQPv7mrN6gNB1fZQoaAZoCWgPQwhN9PkoI7txQJSGlFKUaBVLsGgWR0D7+5r4n4O+dX2UKGgGaAloD0MIGAXB41vcckCUhpRSlGgVS5toFkdA+/ubcUZeiXV9lChoBmgJaA9DCDm4dMx5jXNAlIaUUpRoFUuyaBZHQPv7nC9YfXB1fZQoaAZoCWgPQwjKF7SQwMZzQJSGlFKUaBVLwmgWR0D7+5ydGAkLdX2UKGgGaAloD0MIW+z2WeVxckCUhpRSlGgVS49oFkdA+/ueaDkELnV9lChoBmgJaA9DCAA6zJeX+XJAlIaUUpRoFUvAaBZHQPv7n6AAhjh1fZQoaAZoCWgPQwg3xeOi2opzQJSGlFKUaBVLxWgWR0D7+6ETisGQdX2UKGgGaAloD0MIgsmNImt2c0CUhpRSlGgVS8xoFkdA+/uhB+OOsHV9lChoBmgJaA9DCO8DkNpE+nNAlIaUUpRoFUuqaBZHQPv7oZiPQv91fZQoaAZoCWgPQwi1T8djxiJyQJSGlFKUaBVLyWgWR0D7+6JUqQRxdX2UKGgGaAloD0MI4SU49cEAckCUhpRSlGgVS6loFkdA+/uitK7I1nV9lChoBmgJaA9DCNCc9SmHYHJAlIaUUpRoFUu6aBZHQPv7ozlV94N1fZQoaAZoCWgPQwg6W0BofdByQJSGlFKUaBVLk2gWR0D7+6Mya/h3dX2UKGgGaAloD0MIWOcYkH2tckCUhpRSlGgVS6poFkdA+/ujMc2itnV9lChoBmgJaA9DCKORzyse73JAlIaUUpRoFUu3aBZHQPv7o3Imw7l1fZQoaAZoCWgPQwjgLCXLib1wQJSGlFKUaBVLsmgWR0D7+6PoqCpWdX2UKGgGaAloD0MI5WTiVkF/cECUhpRSlGgVS7toFkdA+/ukIMBp6HV9lChoBmgJaA9DCET5ghaSznBAlIaUUpRoFUuXaBZHQPv7pBxKg7J1fZQoaAZoCWgPQwg0ZhL1AnByQJSGlFKUaBVLiGgWR0D7+6RUDMePdX2UKGgGaAloD0MILqwb704+dECUhpRSlGgVS8BoFkdA+/ulOsgdO3V9lChoBmgJaA9DCLqHhO/9ZnJAlIaUUpRoFUu6aBZHQPv7pTx6OYJ1fZQoaAZoCWgPQwiM8zehkF10QJSGlFKUaBVLvWgWR0D7+6WzQu27dX2UKGgGaAloD0MIG4NOCF3rc0CUhpRSlGgVS8VoFkdA+/um792ovXV9lChoBmgJaA9DCBy0Vx8PVnNAlIaUUpRoFUvIaBZHQPv7qFwCKaZ1fZQoaAZoCWgPQwhjtmRVBKxwQJSGlFKUaBVLp2gWR0D7+6iMOPNndX2UKGgGaAloD0MIUWuad1x0cECUhpRSlGgVS5poFkdA+/up/XwsoXV9lChoBmgJaA9DCONPVDYst3JAlIaUUpRoFUvGaBZHQPv7qsQPI4l1fZQoaAZoCWgPQwhHkbWG0rpyQJSGlFKUaBVLmWgWR0D7+6uTz/ZNdX2UKGgGaAloD0MIGCE82niXc0CUhpRSlGgVS6doFkdA+/ur1zQu3HV9lChoBmgJaA9DCOSFdHjIWHFAlIaUUpRoFUunaBZHQPv7rAS13MZ1fZQoaAZoCWgPQwjZPuQtl/ZxQJSGlFKUaBVLlWgWR0D7+6w8PWhAdWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 12832,
80
  "n_steps": 4096,
81
  "gamma": 0.9995,
82
  "gae_lambda": 0.99,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e824687f92edf670d245ee9955ba03af3908d4572c8212f97dd0df1acf3ec305
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b6d554ea7b7265a3eebc6d8047fc5dbd62786af25726833f425d90aff40b8d
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6487ab7cf35f585dca4198942f225dc28de5ff30f04c52bb7d68bd7c19418984
3
  size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3820ee897feafa5e0a60f173fc95ea6888fb9f3bcfa133046a9a0e751613b7e4
3
  size 43393
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 289.2049424640112, "std_reward": 16.922641029621882, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T00:52:30.409976"}
 
1
+ {"mean_reward": 261.8004057884157, "std_reward": 70.13235192433885, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-11T02:32:46.758210"}