xhluca commited on
Commit
284f8be
1 Parent(s): 4b83056

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -5
README.md CHANGED
@@ -8,7 +8,21 @@ tags:
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -28,7 +42,7 @@ Then you can use the model like this:
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
@@ -54,8 +68,8 @@ def mean_pooling(model_output, attention_mask):
54
  sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -77,7 +91,7 @@ print(sentence_embeddings)
77
 
78
  <!--- Describe how your model was evaluated -->
79
 
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
 
82
 
83
  ## Training
 
8
 
9
  ---
10
 
11
+ <div align="center">
12
+ <h1 style="margin-bottom: 0.5em;">WebLINX: Real-World Website Navigation with Multi-Turn Dialogue</h1>
13
+ <em>Xing Han Lù*, Zdeněk Kasner*, Siva Reddy</em>
14
+ </div>
15
+
16
+ <div style="margin-bottom: 2em"></div>
17
+
18
+ <div style="display: flex; justify-content: space-around; align-items: center; font-size: 120%;">
19
+ <div><a href="https://arxiv.org/abs/2402.05930">📄Paper</a></div>
20
+ <div><a href="https://mcgill-nlp.github.io/weblinx">🌐Website</a></div>
21
+ <div><a href="https://huggingface.co/spaces/McGill-NLP/weblinx-explorer">💻Explorer</a></div>
22
+ <div><a href="https://github.com/McGill-NLP/WebLINX">💾Code</a></div>
23
+ </div>
24
+
25
+ # Sentence Transformers Details
26
 
27
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
28
 
 
42
  from sentence_transformers import SentenceTransformer
43
  sentences = ["This is an example sentence", "Each sentence is converted"]
44
 
45
+ model = SentenceTransformer('McGill-NLP/MiniLM-L6-dmr')
46
  embeddings = model.encode(sentences)
47
  print(embeddings)
48
  ```
 
68
  sentences = ['This is an example sentence', 'Each sentence is converted']
69
 
70
  # Load model from HuggingFace Hub
71
+ tokenizer = AutoTokenizer.from_pretrained('MiniLM-L6-dmr')
72
+ model = AutoModel.from_pretrained('MiniLM-L6-dmr')
73
 
74
  # Tokenize sentences
75
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
91
 
92
  <!--- Describe how your model was evaluated -->
93
 
94
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=MiniLM-L6-dmr)
95
 
96
 
97
  ## Training