|
import os |
|
from functools import partial |
|
from typing import List, Union |
|
|
|
import numpy as np |
|
import numpy.typing as npt |
|
import torch |
|
|
|
import plasma.huggingface as hf |
|
|
|
from .module.yolov5.yolo_utils.datasets import letterbox |
|
from .module.yolov5.yolo_utils.general import non_max_suppression, scale_coords |
|
from .preprocess import create_batch, process_image |
|
from .utils import ( |
|
DETECTOR_WEIGHT_ID, |
|
check_image_shape, |
|
load_yolo_model, |
|
) |
|
|
|
|
|
class StampDetector: |
|
def __init__( |
|
self, model_path: Union[str, None] = None, device: str = "cpu", conf_thres: float = 0.5, iou_thres: float = 0.3 |
|
) -> None: |
|
"""Create an object for stamp detection""" |
|
|
|
|
|
checkpoint = hf.download_file(model_path) |
|
print(model_path) |
|
print(checkpoint) |
|
|
|
self.device = device |
|
self.model, self.stride = load_yolo_model(checkpoint, device="cpu") |
|
|
|
self.img_size = 640 |
|
self.conf_thres = conf_thres |
|
self.iou_thres = iou_thres |
|
|
|
self.process_func_ = partial(process_image, device="cpu") |
|
|
|
def __call__(self, image_list: Union[List[npt.NDArray], npt.NDArray]) -> List[npt.NDArray]: |
|
"""Returns a list of bounding boxes [xmin, ymin, xmax, ymax] for each image in image_list |
|
Each element in the list is a numpy array of shape N x 4 |
|
|
|
Args: |
|
image_list (Union[List[npt.NDArray], npt.NDArray]): input images |
|
|
|
Returns: |
|
[List[np.ndarray]]: output bounding boxes |
|
""" |
|
|
|
if not isinstance(image_list, (np.ndarray, list)): |
|
raise TypeError("Invalid Type: Input must be of type list or np.ndarray") |
|
|
|
if len(image_list) > 0: |
|
check_image_shape(image_list[0]) |
|
else: |
|
return [] |
|
return self.__detect(image_list) |
|
|
|
def __detect(self, image_list): |
|
""" |
|
Use __call__ method |
|
""" |
|
batches, indices = create_batch(image_list, set(list(x.shape for x in image_list))) |
|
predictions = [] |
|
|
|
for origin_images in batches: |
|
images = [letterbox(x, 640, stride=32)[0] for x in origin_images] |
|
images = list(map(self.process_func_, images)) |
|
tensor = torch.stack(images).half() |
|
|
|
with torch.no_grad(): |
|
pred = self.model(tensor)[0] |
|
all_boxes = [] |
|
pred = non_max_suppression(pred, 0.3, 0.30, classes=0, agnostic=1) |
|
|
|
for idx, det in enumerate(pred): |
|
if len(det): |
|
det[:, :4] = scale_coords(images[idx].shape[1:], det[:, :4], origin_images[0].shape) |
|
det = det[:, :4].round() |
|
all_boxes.append(det.cpu().numpy().astype("int").tolist()) |
|
else: |
|
all_boxes.append([]) |
|
|
|
predictions.extend(all_boxes) |
|
|
|
z = zip(predictions, indices) |
|
sorted_result = sorted(z, key=lambda x: x[1]) |
|
predictions, _ = zip(*sorted_result) |
|
|
|
return list(predictions) |
|
|