Upload 17 files
Browse files- stamp_processing/__init__.py +11 -0
- stamp_processing/callback.py +41 -0
- stamp_processing/detector.py +92 -0
- stamp_processing/module/unet.py +209 -0
- stamp_processing/module/yolov5/__init__.py +4 -0
- stamp_processing/module/yolov5/hubconf.py +47 -0
- stamp_processing/module/yolov5/models/common.py +293 -0
- stamp_processing/module/yolov5/models/experimental.py +136 -0
- stamp_processing/module/yolov5/models/yolo.py +264 -0
- stamp_processing/module/yolov5/yolo/utils/__init__.py +4 -0
- stamp_processing/module/yolov5/yolo/utils/autoanchor.py +10 -0
- stamp_processing/module/yolov5/yolo/utils/datasets.py +43 -0
- stamp_processing/module/yolov5/yolo/utils/general.py +181 -0
- stamp_processing/module/yolov5/yolo/utils/utils.py +82 -0
- stamp_processing/preprocess.py +72 -0
- stamp_processing/remover.py +94 -0
- stamp_processing/utils.py +60 -0
stamp_processing/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
isort: skip_file
|
3 |
+
"""
|
4 |
+
from pkg_resources import DistributionNotFound, get_distribution
|
5 |
+
|
6 |
+
__version__ = None
|
7 |
+
try:
|
8 |
+
__version__ = get_distribution("table_reconstruction").version
|
9 |
+
except DistributionNotFound:
|
10 |
+
__version__ == "0.0.0" # package is not installed
|
11 |
+
pass
|
stamp_processing/callback.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def iou(table_box, stamp_box):
|
5 |
+
# table_box = [x1, y1, x2, y2]
|
6 |
+
# stamp_box = [x1, y1, x2, y2]
|
7 |
+
x1 = max(table_box[0], stamp_box[0])
|
8 |
+
y1 = max(table_box[1], stamp_box[1])
|
9 |
+
x2 = min(table_box[2], stamp_box[2])
|
10 |
+
y2 = min(table_box[3], stamp_box[3])
|
11 |
+
|
12 |
+
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
13 |
+
union = (table_box[2] - table_box[0]) * (table_box[3] - table_box[1]) + (stamp_box[2] - stamp_box[0]) * (stamp_box[3] - stamp_box[1]) - intersection
|
14 |
+
return intersection / union
|
15 |
+
|
16 |
+
|
17 |
+
def remove_potiential_table_fp(stamp_detector, image, table_preds, iou_threshold=0.6):
|
18 |
+
stamps = stamp_detector([image])[0]
|
19 |
+
remove_idc = []
|
20 |
+
for stamp in stamps:
|
21 |
+
for i, table in enumerate(table_preds):
|
22 |
+
if iou(table, stamp) >= iou_threshold:
|
23 |
+
remove_idc.append(i)
|
24 |
+
return remove_idc
|
25 |
+
|
26 |
+
|
27 |
+
def torch_delete_by_idc(tensor, indices):
|
28 |
+
mask = torch.ones(tensor.shape[0], dtype=torch.bool)
|
29 |
+
if len(indices) == 0:
|
30 |
+
return tensor
|
31 |
+
else:
|
32 |
+
mask[indices] = False
|
33 |
+
return tensor[mask, :]
|
34 |
+
|
35 |
+
|
36 |
+
def remove_box_by_idc(boxes, indices):
|
37 |
+
|
38 |
+
item = getattr(boxes, 'data')
|
39 |
+
setattr(boxes, 'data', torch_delete_by_idc(item, indices))
|
40 |
+
|
41 |
+
return boxes
|
stamp_processing/detector.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import partial
|
3 |
+
from typing import List, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import plasma.huggingface as hf
|
10 |
+
|
11 |
+
from .module.yolov5.yolo_utils.datasets import letterbox
|
12 |
+
from .module.yolov5.yolo_utils.general import non_max_suppression, scale_coords
|
13 |
+
from .preprocess import create_batch, process_image
|
14 |
+
from .utils import (
|
15 |
+
DETECTOR_WEIGHT_ID,
|
16 |
+
check_image_shape,
|
17 |
+
load_yolo_model,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
class StampDetector:
|
22 |
+
def __init__(
|
23 |
+
self, model_path: Union[str, None] = None, device: str = "cpu", conf_thres: float = 0.5, iou_thres: float = 0.3
|
24 |
+
) -> None:
|
25 |
+
"""Create an object for stamp detection"""
|
26 |
+
# assert device == "cpu", "Currently only support cpu inference"
|
27 |
+
|
28 |
+
checkpoint = hf.download_file(model_path)
|
29 |
+
print(model_path)
|
30 |
+
print(checkpoint)
|
31 |
+
|
32 |
+
self.device = device
|
33 |
+
self.model, self.stride = load_yolo_model(checkpoint, device=device)
|
34 |
+
|
35 |
+
self.img_size = 640
|
36 |
+
self.conf_thres = conf_thres
|
37 |
+
self.iou_thres = iou_thres
|
38 |
+
|
39 |
+
self.process_func_ = partial(process_image, device=self.device)
|
40 |
+
|
41 |
+
def __call__(self, image_list: Union[List[npt.NDArray], npt.NDArray]) -> List[npt.NDArray]:
|
42 |
+
"""Returns a list of bounding boxes [xmin, ymin, xmax, ymax] for each image in image_list
|
43 |
+
Each element in the list is a numpy array of shape N x 4
|
44 |
+
|
45 |
+
Args:
|
46 |
+
image_list (Union[List[npt.NDArray], npt.NDArray]): input images
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
[List[np.ndarray]]: output bounding boxes
|
50 |
+
"""
|
51 |
+
|
52 |
+
if not isinstance(image_list, (np.ndarray, list)):
|
53 |
+
raise TypeError("Invalid Type: Input must be of type list or np.ndarray")
|
54 |
+
|
55 |
+
if len(image_list) > 0:
|
56 |
+
check_image_shape(image_list[0])
|
57 |
+
else:
|
58 |
+
return []
|
59 |
+
return self.__detect(image_list) # type: ignore
|
60 |
+
|
61 |
+
def __detect(self, image_list): # type: ignore
|
62 |
+
"""
|
63 |
+
Use __call__ method
|
64 |
+
"""
|
65 |
+
batches, indices = create_batch(image_list, set(list(x.shape for x in image_list)))
|
66 |
+
predictions = []
|
67 |
+
|
68 |
+
for origin_images in batches:
|
69 |
+
images = [letterbox(x, 640, stride=32)[0] for x in origin_images] # type: ignore
|
70 |
+
images = list(map(self.process_func_, images))
|
71 |
+
tensor = torch.stack(images).half()
|
72 |
+
|
73 |
+
with torch.no_grad():
|
74 |
+
pred = self.model(tensor)[0]
|
75 |
+
all_boxes = []
|
76 |
+
pred = non_max_suppression(pred, 0.3, 0.30, classes=0, agnostic=1) # type: ignore
|
77 |
+
|
78 |
+
for idx, det in enumerate(pred):
|
79 |
+
if len(det):
|
80 |
+
det[:, :4] = scale_coords(images[idx].shape[1:], det[:, :4], origin_images[0].shape) # type: ignore
|
81 |
+
det = det[:, :4].round()
|
82 |
+
all_boxes.append(det.cpu().numpy().astype("int").tolist())
|
83 |
+
else:
|
84 |
+
all_boxes.append([])
|
85 |
+
|
86 |
+
predictions.extend(all_boxes)
|
87 |
+
|
88 |
+
z = zip(predictions, indices)
|
89 |
+
sorted_result = sorted(z, key=lambda x: x[1])
|
90 |
+
predictions, _ = zip(*sorted_result)
|
91 |
+
|
92 |
+
return list(predictions)
|
stamp_processing/module/unet.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from fastai.vision.all import *
|
6 |
+
|
7 |
+
|
8 |
+
# from backend.StampRemoval.util import *
|
9 |
+
__all__ = ["CustomUnetBlock", "CustomDynamicUnet", "UnetInference"]
|
10 |
+
|
11 |
+
|
12 |
+
class CustomUnetBlock(Module):
|
13 |
+
"""A quasi-UNet block, using `PixelShuffle_ICNR upsampling`."""
|
14 |
+
|
15 |
+
@delegates(ConvLayer.__init__)
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
up_in_c,
|
19 |
+
x_in_c,
|
20 |
+
hook,
|
21 |
+
final_div=True,
|
22 |
+
blur=False,
|
23 |
+
act_cls=defaults.activation,
|
24 |
+
self_attention=False,
|
25 |
+
init=nn.init.kaiming_normal_,
|
26 |
+
norm_type=None,
|
27 |
+
**kwargs,
|
28 |
+
):
|
29 |
+
self.hook = hook
|
30 |
+
self.shuf = PixelShuffle_ICNR(up_in_c, up_in_c // 2, blur=blur, act_cls=act_cls, norm_type=norm_type)
|
31 |
+
self.bn = BatchNorm(x_in_c)
|
32 |
+
ni = up_in_c // 2 + x_in_c
|
33 |
+
# nf = ni if final_div else ni//2
|
34 |
+
nf = ni // 2 if final_div else ni // 4
|
35 |
+
self.conv1 = ConvLayer(ni, nf, act_cls=act_cls, norm_type=norm_type, **kwargs)
|
36 |
+
self.conv2 = ConvLayer(
|
37 |
+
nf,
|
38 |
+
nf,
|
39 |
+
act_cls=act_cls,
|
40 |
+
norm_type=norm_type,
|
41 |
+
xtra=SelfAttention(nf) if self_attention else None,
|
42 |
+
**kwargs,
|
43 |
+
)
|
44 |
+
self.relu = act_cls()
|
45 |
+
apply_init(nn.Sequential(self.conv1, self.conv2), init)
|
46 |
+
|
47 |
+
def forward(self, up_in):
|
48 |
+
s = self.hook.stored
|
49 |
+
up_out = self.shuf(up_in)
|
50 |
+
ssh = s.shape[-2:]
|
51 |
+
if ssh != up_out.shape[-2:]:
|
52 |
+
up_out = F.interpolate(up_out, s.shape[-2:], mode="nearest")
|
53 |
+
cat_x = self.relu(torch.cat([up_out, self.bn(s)], dim=1))
|
54 |
+
return self.conv2(self.conv1(cat_x))
|
55 |
+
|
56 |
+
|
57 |
+
class CustomDynamicUnet(SequentialEx):
|
58 |
+
"""Create a U-Net from a given architecture."""
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
encoder,
|
63 |
+
n_out,
|
64 |
+
img_size,
|
65 |
+
blur=False,
|
66 |
+
blur_final=True,
|
67 |
+
self_attention=False,
|
68 |
+
y_range=None,
|
69 |
+
last_cross=True,
|
70 |
+
bottle=False,
|
71 |
+
act_cls=defaults.activation,
|
72 |
+
init=nn.init.kaiming_normal_,
|
73 |
+
norm_type=None,
|
74 |
+
**kwargs,
|
75 |
+
):
|
76 |
+
imsize = img_size
|
77 |
+
sizes = model_sizes(encoder, size=imsize)
|
78 |
+
|
79 |
+
sz_chg_idxs = list(reversed(self._get_sz_change_idxs(sizes)))
|
80 |
+
self.sfs = hook_outputs([encoder[i] for i in sz_chg_idxs], detach=False)
|
81 |
+
x = dummy_eval(encoder, imsize).detach()
|
82 |
+
|
83 |
+
ni = sizes[-1][1]
|
84 |
+
|
85 |
+
middle_conv = nn.Sequential(
|
86 |
+
ConvLayer(ni, ni, act_cls=act_cls, norm_type=norm_type, **kwargs),
|
87 |
+
ConvLayer(ni, ni, act_cls=act_cls, norm_type=norm_type, **kwargs),
|
88 |
+
).eval()
|
89 |
+
x = middle_conv(x)
|
90 |
+
layers = [encoder, BatchNorm(ni), nn.ReLU(), middle_conv]
|
91 |
+
|
92 |
+
for i, idx in enumerate(sz_chg_idxs):
|
93 |
+
not_final = i != len(sz_chg_idxs) - 1
|
94 |
+
up_in_c, x_in_c = int(x.shape[1]), int(sizes[idx][1])
|
95 |
+
do_blur = blur and (not_final or blur_final)
|
96 |
+
sa = self_attention and (i == len(sz_chg_idxs) - 3)
|
97 |
+
unet_block = CustomUnetBlock(
|
98 |
+
up_in_c,
|
99 |
+
x_in_c,
|
100 |
+
self.sfs[i],
|
101 |
+
final_div=not_final,
|
102 |
+
blur=do_blur,
|
103 |
+
self_attention=sa,
|
104 |
+
act_cls=act_cls,
|
105 |
+
init=init,
|
106 |
+
norm_type=norm_type,
|
107 |
+
**kwargs,
|
108 |
+
).eval()
|
109 |
+
layers.append(unet_block)
|
110 |
+
x = unet_block(x)
|
111 |
+
|
112 |
+
ni = x.shape[1]
|
113 |
+
if imsize != sizes[0][-2:]:
|
114 |
+
layers.append(PixelShuffle_ICNR(ni, act_cls=act_cls, norm_type=norm_type))
|
115 |
+
layers.append(ResizeToOrig())
|
116 |
+
if last_cross:
|
117 |
+
layers.append(MergeLayer(dense=True))
|
118 |
+
ni += in_channels(encoder)
|
119 |
+
layers.append(
|
120 |
+
ResBlock(
|
121 |
+
1,
|
122 |
+
ni,
|
123 |
+
ni // 2 if bottle else ni,
|
124 |
+
act_cls=act_cls,
|
125 |
+
norm_type=norm_type,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
)
|
129 |
+
layers += [ConvLayer(ni, n_out, ks=1, act_cls=None, norm_type=norm_type, **kwargs)]
|
130 |
+
apply_init(nn.Sequential(layers[3], layers[-2]), init)
|
131 |
+
# apply_init(nn.Sequential(layers[2]), init)
|
132 |
+
if y_range is not None:
|
133 |
+
layers.append(SigmoidRange(*y_range))
|
134 |
+
super().__init__(*layers)
|
135 |
+
|
136 |
+
def _get_sz_change_idxs(self, sizes):
|
137 |
+
"Get the indexes of the layers where the size of the activation changes."
|
138 |
+
feature_szs = [size[-1] for size in sizes]
|
139 |
+
sz_chg_idxs = list(np.where(np.array(feature_szs[:-1]) != np.array(feature_szs[1:]))[0])
|
140 |
+
return sz_chg_idxs
|
141 |
+
|
142 |
+
def __del__(self):
|
143 |
+
if hasattr(self, "sfs"):
|
144 |
+
self.sfs.remove()
|
145 |
+
|
146 |
+
|
147 |
+
class PerceptualLoss:
|
148 |
+
pass
|
149 |
+
|
150 |
+
|
151 |
+
class UnetInference:
|
152 |
+
def __init__(self, model_path):
|
153 |
+
"""Inference interface for unet model"""
|
154 |
+
self.learn = load_learner(model_path)
|
155 |
+
self.learn.model.eval()
|
156 |
+
|
157 |
+
def __call__(self, image_array: str, bs: int = 1) -> List[np.ndarray]:
|
158 |
+
"""Perform forward pass and decode the prediction of Unet model
|
159 |
+
|
160 |
+
Args:
|
161 |
+
image_array (list): list of numpy array
|
162 |
+
bs (int, optional): [batch size]. Defaults to 1.
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
[list]: list of numpy array
|
166 |
+
"""
|
167 |
+
if len(image_array) < 1:
|
168 |
+
return []
|
169 |
+
|
170 |
+
batches = self.__build_batches(image_array, bs=bs)
|
171 |
+
outs = []
|
172 |
+
with torch.no_grad():
|
173 |
+
for b in batches:
|
174 |
+
outs.append(self.learn.model(b))
|
175 |
+
del b
|
176 |
+
pil_images = self.__decode_prediction(outs)
|
177 |
+
return pil_images
|
178 |
+
|
179 |
+
def __decode_prediction(self, preds):
|
180 |
+
out = []
|
181 |
+
i2f = IntToFloatTensor()
|
182 |
+
for pred in preds:
|
183 |
+
img_np = i2f.decodes(pred.squeeze()).numpy()
|
184 |
+
img_np = img_np.transpose(1, 2, 0)
|
185 |
+
img_np = img_np.astype(np.uint8)
|
186 |
+
out.append(img_np)
|
187 |
+
# out.append(Image.fromarray(img_np))
|
188 |
+
del img_np
|
189 |
+
return out
|
190 |
+
|
191 |
+
def __build_batches(self, image_array: list, bs=1):
|
192 |
+
"Builds batches to skip `DataLoader` overhead"
|
193 |
+
type_tfms = [PILImage.create]
|
194 |
+
item_tfms = [ToTensor()]
|
195 |
+
type_pipe = Pipeline(type_tfms)
|
196 |
+
item_pipe = Pipeline(item_tfms)
|
197 |
+
i2f = IntToFloatTensor()
|
198 |
+
batches = []
|
199 |
+
batch = []
|
200 |
+
k = 0
|
201 |
+
for i, im in enumerate(image_array):
|
202 |
+
batch.append(item_pipe(type_pipe(im)))
|
203 |
+
k += 1
|
204 |
+
if i == len(image_array) - 1 or k == bs:
|
205 |
+
# batches.append(torch.cat([norm(i2f(b.cuda())) for b in batch]))
|
206 |
+
batches.append(torch.stack([i2f(b.cpu()) for b in batch], axis=0))
|
207 |
+
batch = []
|
208 |
+
k = 0
|
209 |
+
return batches
|
stamp_processing/module/yolov5/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
|
4 |
+
YOLO_DIR = Path(__file__).parent.absolute()
|
stamp_processing/module/yolov5/hubconf.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
5 |
+
"""Creates a specified YOLOv5 model
|
6 |
+
Arguments:
|
7 |
+
name (str): name of model, i.e. 'yolov5s'
|
8 |
+
pretrained (bool): load pretrained weights into the model
|
9 |
+
channels (int): number of input channels
|
10 |
+
classes (int): number of model classes
|
11 |
+
autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
|
12 |
+
verbose (bool): print all information to screen
|
13 |
+
device (str, torch.device, None): device to use for model parameters
|
14 |
+
Returns:
|
15 |
+
YOLOv5 pytorch model
|
16 |
+
"""
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
from models.experimental import attempt_load
|
20 |
+
from models.yolo import Model
|
21 |
+
from yolo_utils.torch_utils import select_device
|
22 |
+
|
23 |
+
file = Path(__file__).absolute()
|
24 |
+
|
25 |
+
save_dir = Path("") if str(name).endswith(".pt") else file.parent
|
26 |
+
path = (save_dir / name).with_suffix(".pt") # checkpoint path
|
27 |
+
try:
|
28 |
+
device = select_device(("0" if torch.cuda.is_available() else "cpu") if device is None else device)
|
29 |
+
|
30 |
+
if pretrained and channels == 3 and classes == 80:
|
31 |
+
model = attempt_load(path, map_location=device) # download/load FP32 model
|
32 |
+
else:
|
33 |
+
cfg = list((Path(__file__).parent / "models").rglob(f"{name}.yaml"))[0] # model.yaml path
|
34 |
+
model = Model(cfg, channels, classes) # create model
|
35 |
+
if autoshape:
|
36 |
+
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
37 |
+
return model.to(device)
|
38 |
+
|
39 |
+
except Exception as e:
|
40 |
+
help_url = "https://github.com/ultralytics/yolov5/issues/36"
|
41 |
+
s = "Cache may be out of date, try `force_reload=True`. See %s for help." % help_url
|
42 |
+
raise Exception(s) from e
|
43 |
+
|
44 |
+
|
45 |
+
def custom(path="path/to/model.pt", autoshape=True, verbose=True, device=None):
|
46 |
+
# YOLOv5 custom or local model
|
47 |
+
return _create(path, autoshape=autoshape, verbose=verbose, device=device)
|
stamp_processing/module/yolov5/models/common.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 common modules
|
2 |
+
|
3 |
+
import math
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.cuda import amp
|
10 |
+
|
11 |
+
from yolo_utils import letterbox, make_divisible, non_max_suppression, scale_coords, xyxy2xywh, time_synchronized
|
12 |
+
|
13 |
+
|
14 |
+
def autopad(k, p=None): # kernel, padding
|
15 |
+
# Pad to 'same'
|
16 |
+
if p is None:
|
17 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
18 |
+
return p
|
19 |
+
|
20 |
+
|
21 |
+
def DWConv(c1, c2, k=1, s=1, act=True):
|
22 |
+
# Depthwise convolution
|
23 |
+
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
24 |
+
|
25 |
+
|
26 |
+
class Conv(nn.Module):
|
27 |
+
# Standard convolution
|
28 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
29 |
+
super(Conv, self).__init__()
|
30 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
31 |
+
self.bn = nn.BatchNorm2d(c2)
|
32 |
+
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
return self.act(self.bn(self.conv(x)))
|
36 |
+
|
37 |
+
def fuseforward(self, x):
|
38 |
+
return self.act(self.conv(x))
|
39 |
+
|
40 |
+
|
41 |
+
class Bottleneck(nn.Module):
|
42 |
+
# Standard bottleneck
|
43 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
44 |
+
super(Bottleneck, self).__init__()
|
45 |
+
c_ = int(c2 * e) # hidden channels
|
46 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
47 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
48 |
+
self.add = shortcut and c1 == c2
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
52 |
+
|
53 |
+
|
54 |
+
class BottleneckCSP(nn.Module):
|
55 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
56 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
57 |
+
super(BottleneckCSP, self).__init__()
|
58 |
+
c_ = int(c2 * e) # hidden channels
|
59 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
60 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
61 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
62 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
63 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
64 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
65 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
69 |
+
y2 = self.cv2(x)
|
70 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
71 |
+
|
72 |
+
|
73 |
+
class C3(nn.Module):
|
74 |
+
# CSP Bottleneck with 3 convolutions
|
75 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
76 |
+
super(C3, self).__init__()
|
77 |
+
c_ = int(c2 * e) # hidden channels
|
78 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
79 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
80 |
+
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
81 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
82 |
+
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
86 |
+
|
87 |
+
|
88 |
+
class SPP(nn.Module):
|
89 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
90 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
91 |
+
super(SPP, self).__init__()
|
92 |
+
c_ = c1 // 2 # hidden channels
|
93 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
94 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
95 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
x = self.cv1(x)
|
99 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
100 |
+
|
101 |
+
|
102 |
+
class Focus(nn.Module):
|
103 |
+
# Focus wh information into c-space
|
104 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
105 |
+
super(Focus, self).__init__()
|
106 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
107 |
+
# self.contract = Contract(gain=2)
|
108 |
+
|
109 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
110 |
+
return self.conv(
|
111 |
+
torch.cat(
|
112 |
+
[
|
113 |
+
x[..., ::2, ::2],
|
114 |
+
x[..., 1::2, ::2],
|
115 |
+
x[..., ::2, 1::2],
|
116 |
+
x[..., 1::2, 1::2],
|
117 |
+
],
|
118 |
+
1,
|
119 |
+
)
|
120 |
+
)
|
121 |
+
# return self.conv(self.contract(x))
|
122 |
+
|
123 |
+
|
124 |
+
class Contract(nn.Module):
|
125 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
126 |
+
def __init__(self, gain=2):
|
127 |
+
super().__init__()
|
128 |
+
self.gain = gain
|
129 |
+
|
130 |
+
def forward(self, x):
|
131 |
+
(
|
132 |
+
N,
|
133 |
+
C,
|
134 |
+
H,
|
135 |
+
W,
|
136 |
+
) = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
|
137 |
+
s = self.gain
|
138 |
+
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
|
139 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
140 |
+
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
|
141 |
+
|
142 |
+
|
143 |
+
class Expand(nn.Module):
|
144 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
145 |
+
def __init__(self, gain=2):
|
146 |
+
super().__init__()
|
147 |
+
self.gain = gain
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
151 |
+
s = self.gain
|
152 |
+
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
|
153 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
154 |
+
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
|
155 |
+
|
156 |
+
|
157 |
+
class Concat(nn.Module):
|
158 |
+
# Concatenate a list of tensors along dimension
|
159 |
+
def __init__(self, dimension=1):
|
160 |
+
super(Concat, self).__init__()
|
161 |
+
self.d = dimension
|
162 |
+
|
163 |
+
def forward(self, x):
|
164 |
+
return torch.cat(x, self.d)
|
165 |
+
|
166 |
+
|
167 |
+
class NMS(nn.Module):
|
168 |
+
# Non-Maximum Suppression (NMS) module
|
169 |
+
conf = 0.25 # confidence threshold
|
170 |
+
iou = 0.45 # IoU threshold
|
171 |
+
classes = None # (optional list) filter by class
|
172 |
+
|
173 |
+
def __init__(self):
|
174 |
+
super(NMS, self).__init__()
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
178 |
+
|
179 |
+
|
180 |
+
class autoShape(nn.Module):
|
181 |
+
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
182 |
+
conf = 0.25 # NMS confidence threshold
|
183 |
+
iou = 0.45 # NMS IoU threshold
|
184 |
+
classes = None # (optional list) filter by class
|
185 |
+
|
186 |
+
def __init__(self, model):
|
187 |
+
super(autoShape, self).__init__()
|
188 |
+
self.model = model.eval()
|
189 |
+
|
190 |
+
def autoshape(self):
|
191 |
+
print("autoShape already enabled, skipping... ") # model already converted to model.autoshape()
|
192 |
+
return self
|
193 |
+
|
194 |
+
@torch.no_grad()
|
195 |
+
def forward(self, imgs, size=640, augment=False, profile=False):
|
196 |
+
# Inference from various sources. For height=640, width=1280, RGB images example inputs are:
|
197 |
+
# filename: imgs = 'data/samples/zidane.jpg'
|
198 |
+
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
|
199 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
200 |
+
# PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
|
201 |
+
# numpy: = np.zeros((640,1280,3)) # HWC
|
202 |
+
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
203 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
204 |
+
|
205 |
+
t = [time_synchronized()]
|
206 |
+
p = next(self.model.parameters()) # for device and type
|
207 |
+
if isinstance(imgs, torch.Tensor): # torch
|
208 |
+
with amp.autocast(enabled=p.device.type != "cpu"):
|
209 |
+
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
210 |
+
|
211 |
+
# Pre-process
|
212 |
+
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
213 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
214 |
+
for i, im in enumerate(imgs):
|
215 |
+
f = f"image{i}" # filename
|
216 |
+
# if isinstance(im, str): # filename or uri
|
217 |
+
# im, f = (
|
218 |
+
# np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith("http") else im)),
|
219 |
+
# im,
|
220 |
+
# )
|
221 |
+
# if isinstance(im, Image.Image): # PIL Image
|
222 |
+
# im, f = np.asarray(im), getattr(im, "filename", f) or f
|
223 |
+
files.append(Path(f).with_suffix(".jpg").name)
|
224 |
+
if im.shape[0] < 5: # image in CHW
|
225 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
226 |
+
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
227 |
+
s = im.shape[:2] # HWC
|
228 |
+
shape0.append(s) # image shape
|
229 |
+
g = size / max(s) # gain
|
230 |
+
shape1.append([y * g for y in s])
|
231 |
+
imgs[i] = im # update
|
232 |
+
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
233 |
+
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
234 |
+
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
235 |
+
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
236 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255.0 # uint8 to fp16/32
|
237 |
+
t.append(time_synchronized())
|
238 |
+
|
239 |
+
with amp.autocast(enabled=p.device.type != "cpu"):
|
240 |
+
# Inference
|
241 |
+
y = self.model(x, augment, profile)[0] # forward
|
242 |
+
t.append(time_synchronized())
|
243 |
+
|
244 |
+
# Post-process
|
245 |
+
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
246 |
+
for i in range(n):
|
247 |
+
scale_coords(shape1, y[i][:, :4], shape0[i])
|
248 |
+
|
249 |
+
t.append(time_synchronized())
|
250 |
+
return Detections(imgs, y, files, t, self.names, x.shape)
|
251 |
+
|
252 |
+
|
253 |
+
class Detections:
|
254 |
+
# detections class for YOLOv5 inference results
|
255 |
+
def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
|
256 |
+
super(Detections, self).__init__()
|
257 |
+
d = pred[0].device # device
|
258 |
+
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1.0, 1.0], device=d) for im in imgs] # normalizations
|
259 |
+
self.imgs = imgs # list of images as numpy arrays
|
260 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
261 |
+
self.names = names # class names
|
262 |
+
self.files = files # image filenames
|
263 |
+
self.xyxy = pred # xyxy pixels
|
264 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
265 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
266 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
267 |
+
self.n = len(self.pred) # number of images (batch size)
|
268 |
+
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
269 |
+
self.s = shape # inference BCHW shape
|
270 |
+
|
271 |
+
def tolist(self):
|
272 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
273 |
+
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
|
274 |
+
for d in x:
|
275 |
+
for k in ["imgs", "pred", "xyxy", "xyxyn", "xywh", "xywhn"]:
|
276 |
+
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
277 |
+
return x
|
278 |
+
|
279 |
+
def __len__(self):
|
280 |
+
return self.n
|
281 |
+
|
282 |
+
|
283 |
+
class Classify(nn.Module):
|
284 |
+
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
285 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
286 |
+
super(Classify, self).__init__()
|
287 |
+
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
288 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
289 |
+
self.flat = nn.Flatten()
|
290 |
+
|
291 |
+
def forward(self, x):
|
292 |
+
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
293 |
+
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
stamp_processing/module/yolov5/models/experimental.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 experimental modules
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from .common import Conv, DWConv
|
8 |
+
|
9 |
+
|
10 |
+
class CrossConv(nn.Module):
|
11 |
+
# Cross Convolution Downsample
|
12 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
13 |
+
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
14 |
+
super(CrossConv, self).__init__()
|
15 |
+
c_ = int(c2 * e) # hidden channels
|
16 |
+
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
17 |
+
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
18 |
+
self.add = shortcut and c1 == c2
|
19 |
+
|
20 |
+
def forward(self, x):
|
21 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
22 |
+
|
23 |
+
|
24 |
+
class Sum(nn.Module):
|
25 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
26 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
27 |
+
super(Sum, self).__init__()
|
28 |
+
self.weight = weight # apply weights boolean
|
29 |
+
self.iter = range(n - 1) # iter object
|
30 |
+
if weight:
|
31 |
+
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
y = x[0] # no weight
|
35 |
+
if self.weight:
|
36 |
+
w = torch.sigmoid(self.w) * 2
|
37 |
+
for i in self.iter:
|
38 |
+
y = y + x[i + 1] * w[i]
|
39 |
+
else:
|
40 |
+
for i in self.iter:
|
41 |
+
y = y + x[i + 1]
|
42 |
+
return y
|
43 |
+
|
44 |
+
|
45 |
+
class GhostConv(nn.Module):
|
46 |
+
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
47 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
48 |
+
super(GhostConv, self).__init__()
|
49 |
+
c_ = c2 // 2 # hidden channels
|
50 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
51 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
y = self.cv1(x)
|
55 |
+
return torch.cat([y, self.cv2(y)], 1)
|
56 |
+
|
57 |
+
|
58 |
+
class GhostBottleneck(nn.Module):
|
59 |
+
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
60 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
61 |
+
super(GhostBottleneck, self).__init__()
|
62 |
+
c_ = c2 // 2
|
63 |
+
self.conv = nn.Sequential(
|
64 |
+
GhostConv(c1, c_, 1, 1), # pw
|
65 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
66 |
+
GhostConv(c_, c2, 1, 1, act=False),
|
67 |
+
) # pw-linear
|
68 |
+
self.shortcut = (
|
69 |
+
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
70 |
+
)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
return self.conv(x) + self.shortcut(x)
|
74 |
+
|
75 |
+
|
76 |
+
class MixConv2d(nn.Module):
|
77 |
+
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
78 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
79 |
+
super(MixConv2d, self).__init__()
|
80 |
+
groups = len(k)
|
81 |
+
if equal_ch: # equal c_ per group
|
82 |
+
i = torch.linspace(0, groups - 1e-6, c2).floor() # c2 indices
|
83 |
+
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
84 |
+
else: # equal weight.numel() per group
|
85 |
+
b = [c2] + [0] * groups
|
86 |
+
a = np.eye(groups + 1, groups, k=-1)
|
87 |
+
a -= np.roll(a, 1, axis=1)
|
88 |
+
a *= np.array(k) ** 2
|
89 |
+
a[0] = 1
|
90 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
91 |
+
|
92 |
+
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
93 |
+
self.bn = nn.BatchNorm2d(c2)
|
94 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
98 |
+
|
99 |
+
|
100 |
+
class Ensemble(nn.ModuleList):
|
101 |
+
# Ensemble of models
|
102 |
+
def __init__(self):
|
103 |
+
super(Ensemble, self).__init__()
|
104 |
+
|
105 |
+
def forward(self, x, augment=False):
|
106 |
+
y = []
|
107 |
+
for module in self:
|
108 |
+
y.append(module(x, augment)[0])
|
109 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
110 |
+
# y = torch.stack(y).mean(0) # mean ensemble
|
111 |
+
y = torch.cat(y, 1) # nms ensemble
|
112 |
+
return y, None # inference, train output
|
113 |
+
|
114 |
+
|
115 |
+
def attempt_load(weights, map_location=None):
|
116 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
117 |
+
model = Ensemble()
|
118 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
119 |
+
# attempt_download(w)
|
120 |
+
ckpt = torch.load(w, map_location=map_location) # load
|
121 |
+
model.append(ckpt["ema" if ckpt.get("ema") else "model"].float().fuse().eval()) # FP32 model
|
122 |
+
|
123 |
+
# Compatibility updates
|
124 |
+
for m in model.modules():
|
125 |
+
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
126 |
+
m.inplace = True # pytorch 1.7.0 compatibility
|
127 |
+
elif type(m) is Conv:
|
128 |
+
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
129 |
+
|
130 |
+
if len(model) == 1:
|
131 |
+
return model[-1] # return model
|
132 |
+
else:
|
133 |
+
print("Ensemble created with %s\n" % weights)
|
134 |
+
for k in ["names", "stride"]:
|
135 |
+
setattr(model, k, getattr(model[-1], k))
|
136 |
+
return model # return ensemble
|
stamp_processing/module/yolov5/models/yolo.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# YOLOv5 YOLO-specific modules
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import sys
|
5 |
+
from copy import deepcopy
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
from .common import *
|
11 |
+
from .experimental import *
|
12 |
+
import os
|
13 |
+
from yolo_utils import check_anchor_order, make_divisible, copy_attr, fuse_conv_and_bn, initialize_weights, scale_img
|
14 |
+
|
15 |
+
|
16 |
+
class Detect(nn.Module):
|
17 |
+
stride = None # strides computed during build
|
18 |
+
export = False # onnx export
|
19 |
+
|
20 |
+
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
21 |
+
super(Detect, self).__init__()
|
22 |
+
self.nc = nc # number of classes
|
23 |
+
self.no = nc + 5 # number of outputs per anchor
|
24 |
+
self.nl = len(anchors) # number of detection layers
|
25 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
26 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
27 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
28 |
+
self.register_buffer("anchors", a) # shape(nl,na,2)
|
29 |
+
self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
30 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
# x = x.copy() # for profiling
|
34 |
+
z = [] # inference output
|
35 |
+
self.training |= self.export
|
36 |
+
for i in range(self.nl):
|
37 |
+
x[i] = self.m[i](x[i]) # conv
|
38 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
39 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
40 |
+
|
41 |
+
if not self.training: # inference
|
42 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
43 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
44 |
+
|
45 |
+
y = x[i].sigmoid()
|
46 |
+
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[i] # xy
|
47 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
48 |
+
z.append(y.view(bs, -1, self.no))
|
49 |
+
|
50 |
+
return x if self.training else (torch.cat(z, 1), x)
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def _make_grid(nx=20, ny=20):
|
54 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
55 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
56 |
+
|
57 |
+
|
58 |
+
class Model(nn.Module):
|
59 |
+
def __init__(self, cfg="yolov5s.yaml", ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
60 |
+
super(Model, self).__init__()
|
61 |
+
if isinstance(cfg, dict):
|
62 |
+
self.yaml = cfg # model dict
|
63 |
+
else: # is *.yaml
|
64 |
+
import yaml # for torch hub
|
65 |
+
|
66 |
+
self.yaml_file = Path(cfg).name
|
67 |
+
with open(cfg) as f:
|
68 |
+
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
|
69 |
+
|
70 |
+
# Define model
|
71 |
+
ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels
|
72 |
+
if nc and nc != self.yaml["nc"]:
|
73 |
+
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
74 |
+
self.yaml["nc"] = nc # override yaml value
|
75 |
+
if anchors:
|
76 |
+
logger.info(f"Overriding model.yaml anchors with anchors={anchors}")
|
77 |
+
self.yaml["anchors"] = round(anchors) # override yaml value
|
78 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
79 |
+
self.names = [str(i) for i in range(self.yaml["nc"])] # default names
|
80 |
+
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
81 |
+
|
82 |
+
# Build strides, anchors
|
83 |
+
m = self.model[-1] # Detect()
|
84 |
+
if isinstance(m, Detect):
|
85 |
+
s = 256 # 2x min stride
|
86 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
87 |
+
m.anchors /= m.stride.view(-1, 1, 1)
|
88 |
+
check_anchor_order(m)
|
89 |
+
self.stride = m.stride
|
90 |
+
self._initialize_biases() # only run once
|
91 |
+
# print('Strides: %s' % m.stride.tolist())
|
92 |
+
|
93 |
+
# Init weights, biases
|
94 |
+
initialize_weights(self)
|
95 |
+
self.info()
|
96 |
+
logger.info("")
|
97 |
+
|
98 |
+
def forward(self, x, augment=False, profile=False):
|
99 |
+
if augment:
|
100 |
+
img_size = x.shape[-2:] # height, width
|
101 |
+
s = [1, 0.83, 0.67] # scales
|
102 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
103 |
+
y = [] # outputs
|
104 |
+
for si, fi in zip(s, f):
|
105 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
106 |
+
yi = self.forward_once(xi)[0] # forward
|
107 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
108 |
+
yi[..., :4] /= si # de-scale
|
109 |
+
if fi == 2:
|
110 |
+
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
111 |
+
elif fi == 3:
|
112 |
+
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
113 |
+
y.append(yi)
|
114 |
+
return torch.cat(y, 1), None # augmented inference, train
|
115 |
+
else:
|
116 |
+
return self.forward_once(x, profile) # single-scale inference, train
|
117 |
+
|
118 |
+
def forward_once(self, x, profile=False):
|
119 |
+
y, dt = [], [] # outputs
|
120 |
+
|
121 |
+
for m in self.model.modules():
|
122 |
+
if isinstance(m, nn.Upsample):
|
123 |
+
m.recompute_scale_factor = None
|
124 |
+
|
125 |
+
for m in self.model:
|
126 |
+
if m.f != -1: # if not from previous layer
|
127 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
128 |
+
|
129 |
+
x = m(x) # run
|
130 |
+
|
131 |
+
y.append(x if m.i in self.save else None) # save output
|
132 |
+
|
133 |
+
if profile:
|
134 |
+
print("%.1fms total" % sum(dt))
|
135 |
+
return x
|
136 |
+
|
137 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
138 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
139 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
140 |
+
m = self.model[-1] # Detect() module
|
141 |
+
for mi, s in zip(m.m, m.stride): # from
|
142 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
143 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
144 |
+
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
145 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
146 |
+
|
147 |
+
def _print_biases(self):
|
148 |
+
m = self.model[-1] # Detect() module
|
149 |
+
for mi in m.m: # from
|
150 |
+
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
151 |
+
print(("%6g Conv2d.bias:" + "%10.3g" * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
152 |
+
|
153 |
+
# def _print_weights(self):
|
154 |
+
# for m in self.model.modules():
|
155 |
+
# if type(m) is Bottleneck:
|
156 |
+
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
157 |
+
|
158 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
159 |
+
# print('Fusing layers... ')
|
160 |
+
for m in self.model.modules():
|
161 |
+
if type(m) is Conv and hasattr(m, "bn"):
|
162 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
163 |
+
delattr(m, "bn") # remove batchnorm
|
164 |
+
m.forward = m.fuseforward # update forward
|
165 |
+
# self.info()
|
166 |
+
return self
|
167 |
+
|
168 |
+
def nms(self, mode=True): # add or remove NMS module
|
169 |
+
present = type(self.model[-1]) is NMS # last layer is NMS
|
170 |
+
if mode and not present:
|
171 |
+
print("Adding NMS... ")
|
172 |
+
m = NMS() # module
|
173 |
+
m.f = -1 # from
|
174 |
+
m.i = self.model[-1].i + 1 # index
|
175 |
+
self.model.add_module(name="%s" % m.i, module=m) # add
|
176 |
+
self.eval()
|
177 |
+
elif not mode and present:
|
178 |
+
print("Removing NMS... ")
|
179 |
+
self.model = self.model[:-1] # remove
|
180 |
+
return self
|
181 |
+
|
182 |
+
def autoshape(self): # add autoShape module
|
183 |
+
print("Adding autoShape... ")
|
184 |
+
m = autoShape(self) # wrap model
|
185 |
+
copy_attr(m, self, include=("yaml", "nc", "hyp", "names", "stride"), exclude=()) # copy attributes
|
186 |
+
return m
|
187 |
+
|
188 |
+
# def info(self, verbose=False, img_size=640): # print model information
|
189 |
+
# model_info(self, verbose, img_size)
|
190 |
+
|
191 |
+
|
192 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
193 |
+
logger.info("\n%3s%18s%3s%10s %-40s%-30s" % ("", "from", "n", "params", "module", "arguments"))
|
194 |
+
anchors, nc, gd, gw = (
|
195 |
+
d["anchors"],
|
196 |
+
d["nc"],
|
197 |
+
d["depth_multiple"],
|
198 |
+
d["width_multiple"],
|
199 |
+
)
|
200 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
201 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
202 |
+
|
203 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
204 |
+
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
|
205 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
206 |
+
for j, a in enumerate(args):
|
207 |
+
try:
|
208 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
209 |
+
except Exception as e:
|
210 |
+
logger.error(e)
|
211 |
+
|
212 |
+
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
213 |
+
if m in [
|
214 |
+
Conv,
|
215 |
+
GhostConv,
|
216 |
+
Bottleneck,
|
217 |
+
GhostBottleneck,
|
218 |
+
SPP,
|
219 |
+
DWConv,
|
220 |
+
MixConv2d,
|
221 |
+
Focus,
|
222 |
+
CrossConv,
|
223 |
+
BottleneckCSP,
|
224 |
+
C3,
|
225 |
+
]:
|
226 |
+
c1, c2 = ch[f], args[0]
|
227 |
+
if c2 != no: # if not output
|
228 |
+
c2 = make_divisible(c2 * gw, 8)
|
229 |
+
|
230 |
+
args = [c1, c2, *args[1:]]
|
231 |
+
if m in [BottleneckCSP, C3]:
|
232 |
+
args.insert(2, n) # number of repeats
|
233 |
+
n = 1
|
234 |
+
elif m is nn.BatchNorm2d:
|
235 |
+
args = [ch[f]]
|
236 |
+
elif m is Concat:
|
237 |
+
c2 = sum([ch[x] for x in f])
|
238 |
+
elif m is Detect:
|
239 |
+
args.append([ch[x] for x in f])
|
240 |
+
if isinstance(args[1], int): # number of anchors
|
241 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
242 |
+
elif m is Contract:
|
243 |
+
c2 = ch[f] * args[0] ** 2
|
244 |
+
elif m is Expand:
|
245 |
+
c2 = ch[f] // args[0] ** 2
|
246 |
+
else:
|
247 |
+
c2 = ch[f]
|
248 |
+
|
249 |
+
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
250 |
+
t = str(m)[8:-2].replace("__main__.", "") # module type
|
251 |
+
np = sum([x.numel() for x in m_.parameters()]) # number params
|
252 |
+
m_.i, m_.f, m_.type, m_.np = (
|
253 |
+
i,
|
254 |
+
f,
|
255 |
+
t,
|
256 |
+
np,
|
257 |
+
) # attach index, 'from' index, type, number params
|
258 |
+
logger.info("%3s%18s%3s%10.0f %-40s%-30s" % (i, f, n, np, t, args)) # print
|
259 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
260 |
+
layers.append(m_)
|
261 |
+
if i == 0:
|
262 |
+
ch = []
|
263 |
+
ch.append(c2)
|
264 |
+
return nn.Sequential(*layers), sorted(save)
|
stamp_processing/module/yolov5/yolo/utils/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .datasets import letterbox
|
2 |
+
from .general import make_divisible, non_max_suppression, scale_coords, xyxy2xywh
|
3 |
+
from .torch_utils import time_synchronized, copy_attr, fuse_conv_and_bn, initialize_weights, scale_img
|
4 |
+
from .autoanchor import check_anchor_order
|
stamp_processing/module/yolov5/yolo/utils/autoanchor.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Auto-anchor utils
|
2 |
+
def check_anchor_order(m):
|
3 |
+
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
4 |
+
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
5 |
+
da = a[-1] - a[0] # delta a
|
6 |
+
ds = m.stride[-1] - m.stride[0] # delta s
|
7 |
+
if da.sign() != ds.sign(): # same order
|
8 |
+
print("Reversing anchor order")
|
9 |
+
m.anchors[:] = m.anchors.flip(0)
|
10 |
+
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
stamp_processing/module/yolov5/yolo/utils/datasets.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
def letterbox(
|
6 |
+
img,
|
7 |
+
new_shape=(640, 640),
|
8 |
+
color=(114, 114, 114),
|
9 |
+
auto=True,
|
10 |
+
scaleFill=False,
|
11 |
+
scaleup=True,
|
12 |
+
stride=32,
|
13 |
+
):
|
14 |
+
# Resize and pad image while meeting stride-multiple constraints
|
15 |
+
shape = img.shape[:2] # current shape [height, width]
|
16 |
+
if isinstance(new_shape, int):
|
17 |
+
new_shape = (new_shape, new_shape)
|
18 |
+
|
19 |
+
# Scale ratio (new / old)
|
20 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
21 |
+
if not scaleup: # only scale down, do not scale up (for better test mAP)
|
22 |
+
r = min(r, 1.0)
|
23 |
+
|
24 |
+
# Compute padding
|
25 |
+
ratio = r, r # width, height ratios
|
26 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
27 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
28 |
+
if auto: # minimum rectangle
|
29 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
30 |
+
elif scaleFill: # stretch
|
31 |
+
dw, dh = 0.0, 0.0
|
32 |
+
new_unpad = (new_shape[1], new_shape[0])
|
33 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
34 |
+
|
35 |
+
dw /= 2 # divide padding into 2 sides
|
36 |
+
dh /= 2
|
37 |
+
|
38 |
+
if shape[::-1] != new_unpad: # resize
|
39 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
40 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
41 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
42 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
43 |
+
return img, ratio, (dw, dh)
|
stamp_processing/module/yolov5/yolo/utils/general.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import time
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torchvision
|
7 |
+
|
8 |
+
|
9 |
+
def box_iou(box1, box2):
|
10 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
11 |
+
"""
|
12 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
13 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
14 |
+
Arguments:
|
15 |
+
box1 (Tensor[N, 4])
|
16 |
+
box2 (Tensor[M, 4])
|
17 |
+
Returns:
|
18 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
19 |
+
IoU values for every element in boxes1 and boxes2
|
20 |
+
"""
|
21 |
+
|
22 |
+
def box_area(box):
|
23 |
+
# box = 4xn
|
24 |
+
return (box[2] - box[0]) * (box[3] - box[1])
|
25 |
+
|
26 |
+
area1 = box_area(box1.T)
|
27 |
+
area2 = box_area(box2.T)
|
28 |
+
|
29 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
30 |
+
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
31 |
+
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
32 |
+
|
33 |
+
|
34 |
+
def xywh2xyxy(x):
|
35 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
36 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
37 |
+
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
38 |
+
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
39 |
+
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
40 |
+
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
41 |
+
return y
|
42 |
+
|
43 |
+
|
44 |
+
def non_max_suppression(
|
45 |
+
prediction,
|
46 |
+
conf_thres=0.25,
|
47 |
+
iou_thres=0.45,
|
48 |
+
classes=None,
|
49 |
+
agnostic=False,
|
50 |
+
multi_label=False,
|
51 |
+
labels=(),
|
52 |
+
):
|
53 |
+
"""Runs Non-Maximum Suppression (NMS) on inference results
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
57 |
+
"""
|
58 |
+
|
59 |
+
nc = prediction.shape[2] - 5 # number of classes
|
60 |
+
xc = prediction[..., 4] > conf_thres # candidates
|
61 |
+
|
62 |
+
# Settings
|
63 |
+
_, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
64 |
+
max_det = 300 # maximum number of detections per image
|
65 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
66 |
+
time_limit = 10.0 # seconds to quit after
|
67 |
+
redundant = True # require redundant detections
|
68 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
69 |
+
merge = False # use merge-NMS
|
70 |
+
|
71 |
+
t = time.time()
|
72 |
+
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
73 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
74 |
+
# Apply constraints
|
75 |
+
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
76 |
+
x = x[xc[xi]] # confidence
|
77 |
+
|
78 |
+
# Cat apriori labels if autolabelling
|
79 |
+
if labels and len(labels[xi]):
|
80 |
+
label = labels[xi]
|
81 |
+
v = torch.zeros((len(label), nc + 5), device=x.device)
|
82 |
+
v[:, :4] = label[:, 1:5] # box
|
83 |
+
v[:, 4] = 1.0 # conf
|
84 |
+
v[range(len(label)), label[:, 0].long() + 5] = 1.0 # cls
|
85 |
+
x = torch.cat((x, v), 0)
|
86 |
+
|
87 |
+
# If none remain process next image
|
88 |
+
if not x.shape[0]:
|
89 |
+
continue
|
90 |
+
|
91 |
+
# Compute conf
|
92 |
+
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
93 |
+
|
94 |
+
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
95 |
+
box = xywh2xyxy(x[:, :4])
|
96 |
+
|
97 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
98 |
+
if multi_label:
|
99 |
+
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
100 |
+
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
101 |
+
else: # best class only
|
102 |
+
conf, j = x[:, 5:].max(1, keepdim=True)
|
103 |
+
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
104 |
+
|
105 |
+
# Filter by class
|
106 |
+
if classes is not None:
|
107 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
108 |
+
|
109 |
+
# Apply finite constraint
|
110 |
+
# if not torch.isfinite(x).all():
|
111 |
+
# x = x[torch.isfinite(x).all(1)]
|
112 |
+
|
113 |
+
# Check shape
|
114 |
+
n = x.shape[0] # number of boxes
|
115 |
+
if not n: # no boxes
|
116 |
+
continue
|
117 |
+
elif n > max_nms: # excess boxes
|
118 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
119 |
+
|
120 |
+
# Batched NMS
|
121 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
122 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
123 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
124 |
+
if i.shape[0] > max_det: # limit detections
|
125 |
+
i = i[:max_det]
|
126 |
+
if merge and (1 < n < 3e3): # Merge NMS (boxes merged using weighted mean)
|
127 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
128 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
129 |
+
weights = iou * scores[None] # box weights
|
130 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
131 |
+
if redundant:
|
132 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
133 |
+
|
134 |
+
output[xi] = x[i]
|
135 |
+
if (time.time() - t) > time_limit:
|
136 |
+
print(f"WARNING: NMS time limit {time_limit}s exceeded")
|
137 |
+
break # time limit exceeded
|
138 |
+
|
139 |
+
return output
|
140 |
+
|
141 |
+
|
142 |
+
def clip_coords(boxes, img_shape):
|
143 |
+
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
144 |
+
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
145 |
+
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
146 |
+
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
147 |
+
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
148 |
+
|
149 |
+
|
150 |
+
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
151 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
152 |
+
if ratio_pad is None: # calculate from img0_shape
|
153 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
154 |
+
pad = (
|
155 |
+
(img1_shape[1] - img0_shape[1] * gain) / 2,
|
156 |
+
(img1_shape[0] - img0_shape[0] * gain) / 2,
|
157 |
+
) # wh padding
|
158 |
+
else:
|
159 |
+
gain = ratio_pad[0][0]
|
160 |
+
pad = ratio_pad[1]
|
161 |
+
|
162 |
+
coords[:, [0, 2]] -= pad[0] # x padding
|
163 |
+
coords[:, [1, 3]] -= pad[1] # y padding
|
164 |
+
coords[:, :4] /= gain
|
165 |
+
clip_coords(coords, img0_shape)
|
166 |
+
return coords
|
167 |
+
|
168 |
+
|
169 |
+
def make_divisible(x, divisor):
|
170 |
+
# Returns x evenly divisible by divisor
|
171 |
+
return math.ceil(x / divisor) * divisor
|
172 |
+
|
173 |
+
|
174 |
+
def xyxy2xywh(x):
|
175 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
176 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
177 |
+
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
178 |
+
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
179 |
+
y[:, 2] = x[:, 2] - x[:, 0] # width
|
180 |
+
y[:, 3] = x[:, 3] - x[:, 1] # height
|
181 |
+
return y
|
stamp_processing/module/yolov5/yolo/utils/utils.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import time
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
def select_device(device=""):
|
10 |
+
cpu = device.lower() == "cpu"
|
11 |
+
cuda = not cpu and torch.cuda.is_available()
|
12 |
+
return torch.device("cuda:0" if cuda else "cpu")
|
13 |
+
|
14 |
+
|
15 |
+
def time_synchronized():
|
16 |
+
# pytorch-accurate time
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
torch.cuda.synchronize()
|
19 |
+
return time.time()
|
20 |
+
|
21 |
+
|
22 |
+
def fuse_conv_and_bn(conv, bn):
|
23 |
+
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
24 |
+
fusedconv = (
|
25 |
+
nn.Conv2d(
|
26 |
+
conv.in_channels,
|
27 |
+
conv.out_channels,
|
28 |
+
kernel_size=conv.kernel_size,
|
29 |
+
stride=conv.stride,
|
30 |
+
padding=conv.padding,
|
31 |
+
groups=conv.groups,
|
32 |
+
bias=True,
|
33 |
+
)
|
34 |
+
.requires_grad_(False)
|
35 |
+
.to(conv.weight.device)
|
36 |
+
)
|
37 |
+
|
38 |
+
# prepare filters
|
39 |
+
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
40 |
+
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
41 |
+
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
42 |
+
|
43 |
+
# prepare spatial bias
|
44 |
+
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
45 |
+
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
46 |
+
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
47 |
+
|
48 |
+
return fusedconv
|
49 |
+
|
50 |
+
|
51 |
+
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
52 |
+
# scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
53 |
+
if ratio == 1.0:
|
54 |
+
return img
|
55 |
+
else:
|
56 |
+
h, w = img.shape[2:]
|
57 |
+
s = (int(h * ratio), int(w * ratio)) # new size
|
58 |
+
img = F.interpolate(img, size=s, mode="bilinear", align_corners=False) # resize
|
59 |
+
if not same_shape: # pad/crop img
|
60 |
+
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
61 |
+
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
62 |
+
|
63 |
+
|
64 |
+
def initialize_weights(model):
|
65 |
+
for m in model.modules():
|
66 |
+
t = type(m)
|
67 |
+
if t is nn.Conv2d:
|
68 |
+
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
69 |
+
elif t is nn.BatchNorm2d:
|
70 |
+
m.eps = 1e-3
|
71 |
+
m.momentum = 0.03
|
72 |
+
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
73 |
+
m.inplace = True
|
74 |
+
|
75 |
+
|
76 |
+
def copy_attr(a, b, include=(), exclude=()):
|
77 |
+
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
78 |
+
for k, v in b.__dict__.items():
|
79 |
+
if (len(include) and k not in include) or k.startswith("_") or k in exclude:
|
80 |
+
continue
|
81 |
+
else:
|
82 |
+
setattr(a, k, v)
|
stamp_processing/preprocess.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Set, Tuple
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def create_batch(
|
10 |
+
images: npt.NDArray, shapes: Set[Tuple[int, int]], batch_size: int = 16
|
11 |
+
) -> Tuple[List[List[npt.NDArray]], List[int]]:
|
12 |
+
"""
|
13 |
+
- Input:
|
14 |
+
+) images: List images
|
15 |
+
+) shapes: set of all shapes of input images
|
16 |
+
+) batch_size: number image in one batch
|
17 |
+
- Output:
|
18 |
+
+) images_batch: batch of images for inference
|
19 |
+
+) indices: order of all input images
|
20 |
+
"""
|
21 |
+
split_batch = []
|
22 |
+
images_batch = []
|
23 |
+
for shape in shapes:
|
24 |
+
mini_batch = []
|
25 |
+
images_mini_batch = [] # type: ignore
|
26 |
+
for idx, img in enumerate(images):
|
27 |
+
if img.shape == shape:
|
28 |
+
mini_batch.append(idx)
|
29 |
+
if len(images_mini_batch) < batch_size:
|
30 |
+
images_mini_batch.append(img)
|
31 |
+
else:
|
32 |
+
images_batch.append(images_mini_batch)
|
33 |
+
images_mini_batch = []
|
34 |
+
images_mini_batch.append(img)
|
35 |
+
images_batch.append(images_mini_batch)
|
36 |
+
split_batch.append(mini_batch)
|
37 |
+
del images_mini_batch
|
38 |
+
|
39 |
+
indices = [item for sublist in split_batch for item in sublist]
|
40 |
+
return images_batch, indices
|
41 |
+
|
42 |
+
|
43 |
+
def process_image(img: npt.NDArray, device: str = "cpu") -> npt.NDArray:
|
44 |
+
"""Preprocess function for yolov5
|
45 |
+
|
46 |
+
Args:
|
47 |
+
img (npt.NDArray): Input image
|
48 |
+
device (str, optional): torch device. Defaults to "cpu".
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
npt.NDArray: preprocessed image
|
52 |
+
"""
|
53 |
+
height, width = img.shape[:2]
|
54 |
+
top = (640 - height) // 2
|
55 |
+
bottom = 640 - height - top
|
56 |
+
left = (640 - width) // 2
|
57 |
+
right = 640 - width - left
|
58 |
+
img = cv2.copyMakeBorder(
|
59 |
+
img,
|
60 |
+
top,
|
61 |
+
bottom,
|
62 |
+
left,
|
63 |
+
right,
|
64 |
+
cv2.BORDER_CONSTANT,
|
65 |
+
value=(255, 255, 255),
|
66 |
+
)
|
67 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
68 |
+
img = np.ascontiguousarray(img)
|
69 |
+
img = torch.from_numpy(img).to(device)
|
70 |
+
img = img.float() # uint8 to fp16/32
|
71 |
+
img /= 255.0
|
72 |
+
return img
|
stamp_processing/remover.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
|
7 |
+
from .detector import StampDetector
|
8 |
+
from .module.unet import *
|
9 |
+
from .preprocess import create_batch
|
10 |
+
from .utils import REMOVER_WEIGHT_ID, check_image_shape, download_weight, logger
|
11 |
+
|
12 |
+
|
13 |
+
class StampRemover:
|
14 |
+
def __init__(
|
15 |
+
self, detection_weight: Union[str, None] = None, removal_weight: Union[str, None] = None, device: str = "cpu"
|
16 |
+
):
|
17 |
+
"""Create an object to remove stamps from document images"""
|
18 |
+
|
19 |
+
# assert device == "cpu", "Currently only support cpu inference"
|
20 |
+
|
21 |
+
if removal_weight is None:
|
22 |
+
if not os.path.exists("tmp/"):
|
23 |
+
os.makedirs("tmp/", exist_ok=True)
|
24 |
+
removal_weight = os.path.join("tmp", "stamp_remover.pkl")
|
25 |
+
|
26 |
+
logger.info("Downloading stamp remover weight from google drive")
|
27 |
+
download_weight(REMOVER_WEIGHT_ID, output=removal_weight)
|
28 |
+
logger.info(f"Finished downloading. Weight is saved at {removal_weight}")
|
29 |
+
|
30 |
+
try:
|
31 |
+
self.remover = UnetInference(removal_weight) # type: ignore
|
32 |
+
except Exception as e:
|
33 |
+
logger.error(e)
|
34 |
+
logger.error("There is something wrong when loading remover weight")
|
35 |
+
logger.error(
|
36 |
+
"Please make sure you provide the correct path to the weight"
|
37 |
+
"or mannually download the weight at"
|
38 |
+
f"https://drive.google.com/file/d/{REMOVER_WEIGHT_ID}/view?usp=sharing"
|
39 |
+
)
|
40 |
+
raise FileNotFoundError()
|
41 |
+
|
42 |
+
self.detector = StampDetector(detection_weight, device=device)
|
43 |
+
self.padding = 3
|
44 |
+
|
45 |
+
def __call__(self, image_list: Union[List[npt.NDArray], npt.NDArray], batch_size: int = 16) -> List[npt.NDArray]:
|
46 |
+
"""Detect and remove stamps from document images
|
47 |
+
|
48 |
+
Args:
|
49 |
+
image_list (Union[List[npt.NDArray], npt.NDArray]): list of input images
|
50 |
+
batch_size (int, optional): Defaults to 16.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
List[np.ndarray]: Input images with stamps removed
|
54 |
+
"""
|
55 |
+
if not isinstance(image_list, (np.ndarray, list)):
|
56 |
+
raise TypeError("Invalid Type: Input must be of type list or np.ndarray")
|
57 |
+
|
58 |
+
if len(image_list) > 0:
|
59 |
+
check_image_shape(image_list[0])
|
60 |
+
else:
|
61 |
+
return []
|
62 |
+
return self.__batch_removing(image_list, batch_size) # type:ignore
|
63 |
+
|
64 |
+
def __batch_removing(self, image_list, batch_size=16): # type: ignore
|
65 |
+
new_pages = []
|
66 |
+
|
67 |
+
shapes = set(list(x.shape for x in image_list))
|
68 |
+
images_batch, indices = create_batch(image_list, shapes, batch_size)
|
69 |
+
# num_batch = len(image_list) // batch_size
|
70 |
+
detection_predictions = []
|
71 |
+
for batch in images_batch:
|
72 |
+
if len(batch):
|
73 |
+
detection_predictions.extend(self.detector(batch))
|
74 |
+
z = zip(detection_predictions, indices)
|
75 |
+
sorted_result = sorted(z, key=lambda x: x[1])
|
76 |
+
detection_predictions, _ = zip(*sorted_result)
|
77 |
+
for idx, page_boxes in enumerate(detection_predictions):
|
78 |
+
page_img = image_list[idx]
|
79 |
+
h, w, c = page_img.shape
|
80 |
+
for box in page_boxes:
|
81 |
+
x_min, y_min, x_max, y_max = box[:4]
|
82 |
+
stamp_area = page_img[
|
83 |
+
max(y_min - self.padding, 0) : min(y_max + self.padding, h),
|
84 |
+
max(x_min - self.padding, 0) : min(x_max + self.padding, w),
|
85 |
+
]
|
86 |
+
stamp_area = self.remover([stamp_area]) # type:ignore
|
87 |
+
|
88 |
+
page_img[
|
89 |
+
max(y_min - self.padding, 0) : min(y_max + self.padding, h),
|
90 |
+
max(x_min - self.padding, 0) : min(x_max + self.padding, w),
|
91 |
+
:,
|
92 |
+
] = stamp_area[0]
|
93 |
+
new_pages.append(page_img)
|
94 |
+
return new_pages
|
stamp_processing/utils.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import gdown
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
import torch
|
8 |
+
from torch import device as torch_device
|
9 |
+
from torch.nn import Module
|
10 |
+
|
11 |
+
from .module.yolov5 import YOLO_DIR
|
12 |
+
|
13 |
+
|
14 |
+
logging.basicConfig(format="%(levelname)s - %(message)s'")
|
15 |
+
logger = logging.getLogger()
|
16 |
+
logger.setLevel(logging.INFO)
|
17 |
+
|
18 |
+
DETECTOR_WEIGHT_ID = "1YHH7pLoZEdyxw2AoLz9G4lrq6uuxweYB"
|
19 |
+
REMOVER_WEIGHT_ID = "1Hd79M8DhCwjFuT198R-QB7ozQbHRGcGM"
|
20 |
+
|
21 |
+
|
22 |
+
def select_device(device: str = "") -> torch_device:
|
23 |
+
"""Return a torch.device instance"""
|
24 |
+
cpu = device.lower() == "cpu"
|
25 |
+
cuda = not cpu and torch.cuda.is_available()
|
26 |
+
return torch_device("cuda:0" if cuda else "cpu")
|
27 |
+
|
28 |
+
|
29 |
+
def load_yolo_model(weight_path: str, device: str) -> Tuple[Module, int]:
|
30 |
+
"""Load yolov5 model from specified path using torch hub"""
|
31 |
+
model = torch.hub.load(str(YOLO_DIR), "custom", path=weight_path, source="local", force_reload=True)
|
32 |
+
print(weight_path)
|
33 |
+
# model = torch.load(weight_path, map_location=device)["model"]
|
34 |
+
# model.to(device)
|
35 |
+
return model, model.stride
|
36 |
+
|
37 |
+
|
38 |
+
def download_weight(file_id: str, output: Union[str, None] = None, quiet: bool = False) -> None:
|
39 |
+
"""Download model weight from Google Drive given the file ID"""
|
40 |
+
url = f"https://drive.google.com/uc?id={file_id}"
|
41 |
+
try:
|
42 |
+
gdown.cached_download(url=url, path=output, quiet=quiet)
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(e)
|
45 |
+
logger.error("Something went wrong when downloading the weight")
|
46 |
+
logger.error(
|
47 |
+
"Check your internet connection or manually download the weight "
|
48 |
+
f"at https://drive.google.com/file/d/{file_id}/view?usp=sharing"
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def check_image_shape(image: npt.NDArray) -> None:
|
53 |
+
"""Check if input image is valid"""
|
54 |
+
if not isinstance(image, np.ndarray):
|
55 |
+
raise TypeError("Invalid Type: List value must be of type np.ndarray")
|
56 |
+
else:
|
57 |
+
if len(image.shape) != 3:
|
58 |
+
raise ValueError("Invalid image shape")
|
59 |
+
if image.shape[-1] != 3:
|
60 |
+
raise ValueError("Image must be 3 dimensional")
|