ppo-LunarLander-v2 / config.json
MedTiouti's picture
Upload PPO LunarLander-v2 trained basic agent
4b1d0e2 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e36b0efe290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e36b0efe320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e36b0efe3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e36b0efe440>", "_build": "<function ActorCriticPolicy._build at 0x7e36b0efe4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7e36b0efe560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e36b0efe5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e36b0efe680>", "_predict": "<function ActorCriticPolicy._predict at 0x7e36b0efe710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e36b0efe7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e36b0efe830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e36b0efe8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e36b108c740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720223763002482968, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKY7mT2Fi/i5BYkSu4wDpTYgsaC72IUIOgAAgD8AAAAAM+tVO67Rn7pVwpm774Y3tNfwFDoaNLE6AACAPwAAgD8zS6U9w0kWuotn5LjEp5qyND/iuyDdBjgAAIA/AAAAAJrl67zDbUy6zOqyuz3mxzfXojO7M8HxtgAAgD8AAIA/QMaKvY9ubrpGi4u5pmYYNQHRoDlYrKE4AACAPwAAgD8AdZu8FJiWugNSjjkAKb00+tt3OCqIo7gAAIA/AACAP5opQLxcWzi6xy5Au2ZSYzdH8xm68gsXOgAAgD8AAIA/zSYwveE8orpkw0G6L6NHtXwSkDqeuV45AACAPwAAgD8AX9e94ZyWuuDx1Lrq8TW2ZpOkOW1a9DkAAIA/AAAAAEC/iL2UN9I7I9DQPcsjRb7i6wy8eKtcvQAAAAAAAAAADXyzva5dnrrG/527HsotuOkPg7q5/Uo4AACAPwAAgD+asQK85l+PP24e87vSZba+3V0tPPYI/zsAAAAAAAAAAO34Wz5/Dow/m2l5PgLGhr7cgpI+Bus9vQAAAAAAAAAAmnSuvI82f7otx5M3TyecMhU5pLkVWay2AACAPwAAgD/GBUS+M0OkPttNDT50aWu+zIpMveVLPr0AAAAAAAAAADOup7yj4VE9jQBGPZKnb71pGkC9aVKCOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIL5NO/L1WMAWyUTegDjAF0lEdAkwqJDeCTU3V9lChoBkdAYgr2xIJ7cGgHTegDaAhHQJMLMGt6ol51fZQoaAZHQGXjxXnyNGVoB03oA2gIR0CTEB+6iCardX2UKGgGR0Bh8yLKmsNlaAdN6ANoCEdAkxZpC8e0X3V9lChoBkdAYgyrbQC0W2gHTegDaAhHQJMYexjawll1fZQoaAZHQHGF2HP/rB1oB022AWgIR0CTGVAf+0gKdX2UKGgGR0BhqevOhTOxaAdN6ANoCEdAkx8gxSHdoHV9lChoBkdAYZnFd9lVcWgHTegDaAhHQJMf4kY4yXV1fZQoaAZHQGC+MySFGodoB03oA2gIR0CTPR4CZF5OdX2UKGgGR0BlXIlnh86WaAdN6ANoCEdAkz9Yx59mYnV9lChoBkdAYZ9wYLsru2gHTegDaAhHQJNKnG96C191fZQoaAZHQD36OfdyksVoB0vtaAhHQJNLcLux8lZ1fZQoaAZHQGCLKNyYG+toB03oA2gIR0CTTlDG96C2dX2UKGgGR0Biky9Zid8RaAdN6ANoCEdAk0+UwFkhBHV9lChoBkdAYLlmfXf642gHTegDaAhHQJNQNMYdhiN1fZQoaAZHQGZ7DfFaSs9oB03oA2gIR0CTVaVaOgg6dX2UKGgGR0BgQgkgOjIraAdN6ANoCEdAk1kKzzErG3V9lChoBkdAYrmSlnAZbmgHTegDaAhHQJNZpdVvMr51fZQoaAZHQEiiIfr8iwBoB0vpaAhHQJNaJzMibDx1fZQoaAZHQGbIJk5IYm9oB03oA2gIR0CTWn38XN1RdX2UKGgGR0BmF5bKRuCPaAdN6ANoCEdAk19Te9Ba93V9lChoBkdAYnXroGIKt2gHTegDaAhHQJNk5l8PWhB1fZQoaAZHQGDUL0SRKYloB03oA2gIR0CTZrVS4vvjdX2UKGgGR0BloJaNdZ7paAdN6ANoCEdAk2dwz1schnV9lChoBkdAYSegTRIBimgHTegDaAhHQJNsLlXA/LV1fZQoaAZHQGRGRLbpNbloB03oA2gIR0CTbLH5rP+odX2UKGgGR0BmS2nKnvUjaAdN6ANoCEdAk4o5xWDHwXV9lChoBkdAZmmvqTr3TWgHTegDaAhHQJOXsc+7lJZ1fZQoaAZHQGSB59uxbB5oB03oA2gIR0CTm9gkC3gDdX2UKGgGR0BjTIi7kGRnaAdN6ANoCEdAk51QcHWz4XV9lChoBkdAYbcPEKmbb2gHTegDaAhHQJOeCS7oSth1fZQoaAZHQGM48qFyq+9oB03oA2gIR0CTou5/9YOldX2UKGgGR0BineTot+TeaAdN6ANoCEdAk6XB+SbH63V9lChoBkdAZCAn8baRIWgHTegDaAhHQJOmR4Z/CqJ1fZQoaAZHQGHCns1KoQ5oB03oA2gIR0CTprriEQGwdX2UKGgGR0BgowGGEf1ZaAdN6ANoCEdAk6b9BnjABXV9lChoBkdATUv2qT8pC2gHS9JoCEdAk6fpQLux8nV9lChoBkdAYajFwT/Q0GgHTegDaAhHQJOrdkrf+CN1fZQoaAZHQE2z/rB0p3JoB0vhaAhHQJOueMkyDZl1fZQoaAZHQGHow3PzFuNoB03oA2gIR0CTsZRradtmdX2UKGgGR0BFCPBJqZc+aAdL8WgIR0CTsea1TisGdX2UKGgGR0BhcL5oGpuNaAdN6ANoCEdAk7NepKjBVXV9lChoBkdAXwdHSWqtHWgHTegDaAhHQJO0GqR2bG51fZQoaAZHQGN6V5rxiG5oB03oA2gIR0CTuNYoy9EkdX2UKGgGR0Bc/1JpWV/uaAdN6ANoCEdAk7mOOCGvfXV9lChoBkdAHwIu5BkZrGgHS/RoCEdAk7vD1TR6W3V9lChoBkdAMb0IcBEKE2gHS+loCEdAk79876pHZ3V9lChoBkdAZVpmITGo72gHTegDaAhHQJPYEKneizt1fZQoaAZHQGGX3cYZVGVoB03oA2gIR0CT4uq2BreqdX2UKGgGR0BkPf3cpLElaAdN6ANoCEdAk+hEt/WlM3V9lChoBkdAYnhCDVYp2GgHTegDaAhHQJPo9UADJU51fZQoaAZHQEtlt5UtI09oB0vkaAhHQJPxq/BWPtF1fZQoaAZHQGQ7ghStNi9oB03oA2gIR0CT8ommce8xdX2UKGgGR0Bh3wHJLdvbaAdN6ANoCEdAk/MusgdOqXV9lChoBkdAXWFk078vVWgHTegDaAhHQJPzi4wyqMp1fZQoaAZHQGATkHlfZ29oB03oA2gIR0CT9N03fhuPdX2UKGgGR0BlPLAWSEDhaAdN6ANoCEdAk/lQ44p+dHV9lChoBkdAXmhN8E3bVWgHTegDaAhHQJP+/D0lJH11fZQoaAZHQGLs0KArhBJoB03oA2gIR0CUAMso2GZedX2UKGgGR0Be1yDIzWPMaAdN6ANoCEdAlAGM/D+BH3V9lChoBkdAY7ETVUdaMmgHTegDaAhHQJQGczyjHn51fZQoaAZHQGUEo1k1/DtoB03oA2gIR0CUBvpDu0CzdX2UKGgGR0Bh2KH446wMaAdN6ANoCEdAlAiUFSsKcHV9lChoBkdAYo8+fRNRFmgHTegDaAhHQJQLQ/qxC6Z1fZQoaAZHQGQaSGSIP9VoB03oA2gIR0CUIzJF9a2XdX2UKGgGR0BhtNHpbD/EaAdN6ANoCEdAlDYcCgbp/3V9lChoBkdAYmF4ptrKvGgHTegDaAhHQJQ21dpqREF1fZQoaAZHQGTAekxh2GJoB03oA2gIR0CUPkpVS4vwdX2UKGgGR0BlZD3XZoPDaAdN6ANoCEdAlD7jNY8uBnV9lChoBkdAZ1hwYtQKr2gHTegDaAhHQJQ/TNC7btZ1fZQoaAZHQGAvfgrH2h9oB03oA2gIR0CUP41dgOSXdX2UKGgGR0Blc7j94u9OaAdN6ANoCEdAlECANTcZcnV9lChoBkdAPkDmfXf642gHS+1oCEdAlENB1s+FDnV9lChoBkdAYO93r2QGOmgHTegDaAhHQJRDyCL/CIl1fZQoaAZHQGFOAPuogmtoB03oA2gIR0CUSTgLZzxPdX2UKGgGR0BmJWvIOpbVaAdN6ANoCEdAlEryHM2WIHV9lChoBkdAY6cVZ9uxbGgHTegDaAhHQJRLqdy1eBx1fZQoaAZHQGMns8gZCOZoB03oA2gIR0CUUGFs54nndX2UKGgGR0Bk/tXq7iAEaAdN6ANoCEdAlFDlp48lonV9lChoBkdAYVle67NB4WgHTegDaAhHQJRSeMvRJEp1fZQoaAZHQGLQk12q1gJoB03oA2gIR0CUVYTR6WxAdX2UKGgGR0Bj/uhTOxB3aAdN6ANoCEdAlF0vkq+ajXV9lChoBkdAQpGV1Oj7AWgHS9hoCEdAlF4HrMTviXV9lChoBkdAYLKUSIxgzGgHTegDaAhHQJR/HP3SKFZ1fZQoaAZHQF/4wMH8jzJoB03oA2gIR0CUh+0SAYpEdX2UKGgGR0Bnc+M+/xlQaAdN6ANoCEdAlIjOEh7mdXV9lChoBkdAZOcB3A2ycGgHTegDaAhHQJSJasYEW691fZQoaAZHQGIIaOo5xR5oB03oA2gIR0CUica8pTdddX2UKGgGR0BiRypm29csaAdN6ANoCEdAlItCFGoaUHV9lChoBkdAZhd/Aj6eoWgHTegDaAhHQJSPZD1Gsmx1fZQoaAZHQGdZIzWPLgZoB03oA2gIR0CUkCVoYekpdX2UKGgGR0Bi6kWCVbA2aAdN6ANoCEdAlJYsbaRISXV9lChoBkdAXYZ3gUDdQGgHTegDaAhHQJSX5j+aScN1fZQoaAZHQGKt2LYPGyZoB03oA2gIR0CUmJnuy/sWdX2UKGgGR0Ap/F85S3spaAdNEgFoCEdAlJjfkBCD3HV9lChoBkdAYn3zDGcWkGgHTegDaAhHQJSdp8zAN5N1fZQoaAZHQGfwHwPRRdhoB03oA2gIR0CUn1hufmLcdX2UKGgGR0BmMyV4X40uaAdN6ANoCEdAlKI9NahYeXV9lChoBkdAaJxKA8Swn2gHTegDaAhHQJSodY/3WWh1fZQoaAZHQGQDXsw+MZRoB03oA2gIR0CUqRDAaef7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}