pochunhsu commited on
Commit
0fb8dbf
1 Parent(s): 2550623

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -78
README.md CHANGED
@@ -8,14 +8,16 @@ language:
8
 
9
  # Model Card for Breeze-7B-Base-v1_0
10
 
11
- Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v1.0), specifically intended for Traditional Chinese use.
12
 
13
  [Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0) is the base model for the Breeze-7B series.
14
  It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.
15
 
16
  [Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.
17
 
18
- The current release version of Breeze-7B is v1.0.
 
 
19
 
20
  Practicality-wise:
21
  - Breeze-7B-Base expands the original vocabulary with an additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, and everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See [Inference Performance](#inference-performance).]
@@ -23,14 +25,14 @@ Practicality-wise:
23
 
24
 
25
  Performance-wise:
26
- - Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English when compared to similar-sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]
27
 
28
 
29
  *A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
30
 
31
  ## Demo
32
 
33
- [Play Demo Here](https://huggingface.co/spaces/MediaTek-Research/Demo_Breeze-7B-Instruct-v1.0)
34
 
35
  ## Features
36
 
@@ -56,33 +58,26 @@ Performance-wise:
56
 
57
  ## Base Model Performance
58
 
 
59
  **TMMLU+**, **DRCD**, and **Table** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
60
  [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
61
  and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
62
  We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. All choice problems adapt the selection by the log-likelihood.
63
 
64
 
65
- | Models | |↑ TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MMLU (ACC) |
66
- |----------------------------------------------|--------|--------------|-------------|-------------|------------|
67
- | | |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge|
68
- | | | 5 shot | 3 shot | 5 shot | 5 shot |
69
- | [Yi-34B](https://huggingface.co/01-ai/Yi-34B)| 34B | 63.10 | 84.57 | 49.31 | 77.42 |
70
- | [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 |
71
- | [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 |
72
- | [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 |
73
- | [Qwen-7B-1.5](https://huggingface.co/01-ai/Qwen/Qwen-7B-1.5)| 7B | 46.28 | | 30.56 | 60.53 |
74
- | [**Breeze-7B-Base-v1_0**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0) | 7B | 40.72 | 80.61 | 31.99 | 58.65 |
75
- | [**Breeze-7B-Base-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0_1) | 7B | 40.35 | 81.13 | 28.47 | 61.63 |
76
- | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 |
77
- | [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-v0.2)| 7B | 34.94 | | 33.33 | 57.33 |
78
-
79
-
80
-
81
- \* Few-shot learning cannot effectively guide the model to generate the proper answer.
82
- \* Gemma's score reference can be found in Maxime Labonne's LinkedIn [post](https://www.linkedin.com/posts/maxime-labonne_does-gemma-overfit-the-open-llm-leaderboard-activity-7166220798427402242-lJFm/) discussing potential overfitting on the open LLM leaderboard.
83
 
84
- ## Chat Model Performance
85
 
 
 
86
  **TMMLU+**, **DRCD**, **Table**, and **MT-Bench-tw** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
87
  [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
88
  and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
@@ -91,46 +86,40 @@ Performance-wise:
91
  We use the code revised from [fastchat llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) (GPT4 as judge) to evaluate **MT-Bench-tw** and **MT-Bench**.
92
 
93
 
94
- | Models | |↑ MT-Bench-tw (Score)| TMMLU+ (ACC) | TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MT-Bench (Score) | MMLU (ACC) | MMLU (ACC) |
95
- |---------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|--------------|-------------|-------------|------------------|-------------|-------------|
96
- | | |TC, Chat |TC, Knowledge |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Chat |EN, Knowledge|EN, Knowledge|
97
- | | |0 shot | 0 shot | 5 shot | 3 shot | 0 shot |0 shot | 0 shot | 5 shot |
98
- | [gpt-3.5-turbo](https://openai.com) | |7.1 | 43.56 | | | 45.14 |7.9 | 67.09 | |
99
- | [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B |6.9 | 54.87 | | | 36.81 |7.6 | 71.04 | |
100
- | [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B |6.4 | 48.41 | | | 41.67 |7.2 | 64.91 | |
101
- | [**Breeze-7B-Instruct-v1_0**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) | 7B |**6.0** | | | | |**7.4** | | |
102
- | [**Breeze-7B-Instruct-v0_1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1) | 7B |5.7 | 41.61 | | | 45.83 |7.1 | 63.26 | |
103
- | [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 |6.2 | 55.94 | |
104
- | [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 | | | |
105
- | [gemma-7b](https://huggingface.co/google/gemma-7b) | 7B | | | | | |6.2 | | 64.3 |
106
- | [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | | | 25.69 |6.0 | 59.45 | |
107
- | [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | | | 23.61 |-* | 50.50 | |
108
- | [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat) | 7B |4.2 | 28.08 | | | 31.25 | -* | 42.72 | |
109
-
110
- \* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese.
111
- \* Gemma's score
112
-
113
- | Details on MT-Bench-tw (0 shot):<br/>Models | STEM |Extraction|Reasoning| Math | Coding | Roleplay| Writing |Humanities|↑ AVG |
114
- |-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
115
- | gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
116
- | Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 |
117
- | Qwen-14B-Chat | 7.6 | 5.7 | 4.5 | 4.2 | 5.3 | 7.5 | 7.3 | 9.1 | 6.4 |
118
- | **Breeze-7B-Instruct-v1_0** | **7.8** | 5.2 | **4.2**|**4.15** | 4.05 |**7.6** | **5.85**| 9.05 | **6.0** |
119
- | **Breeze-7B-Instruct-v0_1** | 6.5 | 5.6 | 3.9 | 3.6 | 4.3 | 6.9 | 5.7 | 9.3 | 5.7 |
120
- | Qwen-7B-Chat | 6.6 | 4.5 | 4.8 | 2.9 | 3.6 | 6.2 | 6.8 | 8.2 | 5.4 |
121
- | Yi-6B-Chat | 7.3 | 2.7 | 3.1 | 3.3 | 2.3 | 7.2 | 5.2 | 8.8 | 5.0 |
122
- | Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
123
- | Taiwan-LLM-7B-v2.1-chat | 5.2 | 2.6 | 2.3 | 1.2 | 3.4 | 6.6 | 5.7 | 6.8 | 4.2 |
124
-
125
- | Details on TMMLU+ (0 shot):<br/>Model | STEM | Social Science | Humanities | Other | ↑ AVG |
126
  |-----------------------------------------------------|--------------|----------------|------------|------------|---------|
127
- | Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | 54.87 |
128
- | Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | 48.41 |
129
  | Yi-6B-Chat | 37.80 | 51.74 | 45.36 | 44.25 | 44.79 |
130
- | gpt-3.5-turbo | 41.58 | 48.52 | 40.96 | 43.18 | 43.56 |
131
- | **Breeze-7B-Instruct-v1_0** | | | | | |
132
- | **Breeze-7B-Instruct-v0_1** | 37.41 | 46.81 | 42.06 | 40.16 | 41.61 |
133
- | Qwen-7B-Chat | 35.44 | 46.22 | 38.35 | 40.06 | 40.02 |
134
  | Taiwan-LLM-13B-v2.0-chat | 27.74 | 33.69 | 27.03 | 29.43 | 29.47 |
135
  | Taiwan-LLM-7B-v2.1-chat | 25.58 | 31.76 | 27.36 | 27.61 | 28.08 |
136
 
@@ -140,21 +129,18 @@ Performance-wise:
140
  In this test, we use the first 700 characters of the [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as the input and ask the model to write the same article again.
141
  All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel size of 2).
142
 
143
- | Models |Inference Time (sec)|Estimated Max Input Length (Char)|
144
  |--------------------------------------------------------------------|-------------------|--------------------------|
145
- | Yi-6B-Chat | 10.62 | 5.2k |
146
- | **Breeze-7B-Instruct-v1_0** | 10.74 | 11.1k |
147
- | **Breeze-7B-Instruct-v0_1** | 10.74 | 11.1k |
148
- | Qwen-7B-Chat | 10.86 | 9.8k |
149
- | Qwen-14B-Chat | 18.89 | 9.8k |
150
- | Mistral-7B-v0.1-Instruct | 20.48 | 5.1k |
151
  | Taiwan-LLM-7B-v2.1-chat | 26.26 | 2.2k |
152
- | Taiwan-LLM-13B-v2.0-chat | 36.80 | 2.2k |
153
- | Yi-34B-Chat | 43.71 | 4.5k |
154
 
155
- ## Long-context Performance
156
 
157
- TBD
 
158
 
159
  ## Use in Transformers
160
 
@@ -174,18 +160,18 @@ import torch
174
 
175
  # Instruction Model
176
  model = AutoModelForCausalLM.from_pretrained(
177
- "MediaTek-Research/Breeze-7B-Instruct-v0_1",
178
  device_map="auto",
179
  torch_dtype=torch.bfloat16,
180
- attn_implementation="flash_attention_2" # optional
181
  )
182
 
183
  # Basemodel
184
  model = AutoModelForCausalLM.from_pretrained(
185
- "MediaTek-Research/Breeze-7B-Base-v0_1",
186
  device_map="auto",
187
  torch_dtype=torch.bfloat16,
188
- attn_implementation="flash_attention_2" # optional
189
  )
190
  ```
191
 
@@ -204,22 +190,36 @@ We also integrate `chat_template` into [tokenizer_config.json](tokenizer_config.
204
 
205
  ```python
206
  >>> from transformers import AutoTokenizer
207
- >>> tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v0.1")
208
  >>> chat = [
209
  ... {"role": "user", "content": "你好,請問你可以完成什麼任務?"},
210
  ... {"role": "assistant", "content": "你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。"},
211
  ... {"role": "user", "content": "太棒了!"},
212
  ... ]
213
  >>> tokenizer.apply_chat_template(chat, tokenize=False)
214
- "<s>You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan. [INST] 你好,請問你可以完成什麼任務? [/INST] 你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。 [INST] 太棒了! [/INST] "
215
  # Tokenized results
216
  # ['▁', '你好', ',', '請問', '你', '可以', '完成', '什麼', '任務', '?']
217
  # ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
218
  # ['▁', '太', '棒', '了', '!']
 
 
 
 
219
  ```
220
 
221
  ## Citation
222
 
 
 
 
 
 
 
 
 
 
 
223
  ```
224
  @article{MediaTek-Research2024breeze7b,
225
  title={Breeze-7B Technical Report},
 
8
 
9
  # Model Card for Breeze-7B-Base-v1_0
10
 
11
+ MediaTek Research Breeze-7B (hereinafter referred to as Breeze-7B) is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.
12
 
13
  [Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0) is the base model for the Breeze-7B series.
14
  It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.
15
 
16
  [Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.
17
 
18
+ The current release version of Breeze-7B is v1.0, which has undergone a more refined training process compared to Breeze-7B-v0_1, resulting in significantly improved performance in both English and Traditional Chinese.
19
+
20
+ For details of this model please read our [paper](https://arxiv.org/abs/2403.02712).
21
 
22
  Practicality-wise:
23
  - Breeze-7B-Base expands the original vocabulary with an additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, and everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See [Inference Performance](#inference-performance).]
 
25
 
26
 
27
  Performance-wise:
28
+ - Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese and English when compared to similar-sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen(1.5)-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).]
29
 
30
 
31
  *A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
32
 
33
  ## Demo
34
 
35
+ [Try Demo Here](https://huggingface.co/spaces/MediaTek-Research/Demo_Breeze-7B-Instruct-v1.0)
36
 
37
  ## Features
38
 
 
58
 
59
  ## Base Model Performance
60
 
61
+ Here we compare Breeze-7B-Base-v1_0 with other open-source base language models of similar parameter size that are widely recognized for their good performance in Chinese.
62
  **TMMLU+**, **DRCD**, and **Table** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
63
  [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
64
  and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
65
  We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. All choice problems adapt the selection by the log-likelihood.
66
 
67
 
68
+ | Models | #Parameters | TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MMLU (ACC) |
69
+ |---------------------------------------------- |--------|--------------|-------------|-------------|------------|
70
+ | | |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge|
71
+ | | | 5 shot | 3 shot | 5 shot | 5 shot |
72
+ | [**Breeze-7B-Base-v1_0**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0) | 7B | 42.67 | 80.61 | 31.99 | 61.24 |
73
+ | [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 |
74
+ | [Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) | 7B | 46.59 | 74.41 | 30.56 | 63.07 |
75
+ | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 7B | 36.93 | 79.27 | 27.78 | 64.89 |
 
 
 
 
 
 
 
 
 
 
76
 
77
+ ## Instruction-tuned Model Performance
78
 
79
+ Here we compare Breeze-7B-Instruct-v1_0 with other open-source instruction-tuned language models of similar parameter size that are widely recognized for their good performance in Chinese.
80
+ Also, we listed the benchmark scores of GPT-3.5 Turbo (1106), which represents one of the most widely used high-quality cloud language model API services, for reference.
81
  **TMMLU+**, **DRCD**, **Table**, and **MT-Bench-tw** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2).
82
  [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval)
83
  and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train).
 
86
  We use the code revised from [fastchat llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) (GPT4 as judge) to evaluate **MT-Bench-tw** and **MT-Bench**.
87
 
88
 
89
+ | Models | #Parameters | MT-Bench-tw (Score)| TMMLU+ (ACC) | Table (ACC) | MT-Bench (Score) | MMLU (ACC) |
90
+ |---------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|-------------|------------------|-------------|
91
+ | | |TC, Chat |TC, Knowledge |TC, Reasoning|EN, Chat |EN, Knowledge|
92
+ | | |0 shot | 0 shot | 0 shot |0 shot | 0 shot |
93
+ | [**Breeze-7B-Instruct-v1_0**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) | 7B |6.0 | 42.67 | 39.58 |7.4 | 61.73 |
94
+ | [GPT-3.5-Turbo](https://openai.com) | |7.1 | 43.56 | 45.14 |7.9 | 67.09 |
95
+ | [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) | 7B |6.4 | 45.65 | 34.72 |7.6 | 61.85 |
96
+ | [Mistral-7B-v0.2-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) | 7B |5.6 | 34.95 | 33.33 |7.6 | 59.97 |
97
+ | [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | 25.69 |6.0 | 59.45 |
98
+ | [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | 23.61 |N/A* | 50.50 |
99
+ | [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat) | 7B |4.2 | 28.08 | 31.25 |N/A* | 42.72 |
100
+
101
+ \* Taiwan-LLM models respond to multi-turn questions (English) in Traditional Chinese.
102
+
103
+
104
+ | Details on MT-Bench-tw (0 shot):<br/>Models | STEM |Extraction|Reasoning| Math | Coding | Roleplay| Writing |Humanities| AVG |
105
+ |-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|----------| --------- |
106
+ | **Breeze-7B-Instruct-v1_0** | 7.8 | 5.2 | 4.2 | 4.2 | 4.1 | 7.6 | 5.9 | 9.1 | 6.0 |
107
+ | GPT-3.5-Turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 |
108
+ | Qwen1.5-7B-Chat | 9 | 5.6 | 4.7 | 2.8 | 3.7 | 8.0 | 8.0 | 9.4 | 6.4 |
109
+ | Mistral-7B-v0.2-Instruct | 6.9 | 4.6 | 4.3 | 3.3 | 4.4 | 7.2 | 6.2 | 7.8 | 5.6 |
110
+ | Yi-6B-Chat | 7.3 | 2.7 | 3.1 | 3.3 | 2.3 | 7.2 | 5.2 | 8.8 | 5.0 |
111
+ | Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 |
112
+ | Taiwan-LLM-7B-v2.1-chat | 5.2 | 2.6 | 2.3 | 1.2 | 3.4 | 6.6 | 5.7 | 6.8 | 4.2 |
113
+
114
+
115
+
116
+ | Details on TMMLU+ (0 shot):<br/>Model | STEM | Social Science | Humanities | Other | AVG |
 
 
 
 
117
  |-----------------------------------------------------|--------------|----------------|------------|------------|---------|
118
+ | **Breeze-7B-Instruct-v1_0** | 36.46 | 48.38 | 45.11 | 40.75 | 42.67 |
119
+ | Mistral-7B-v0.2-Instruct | 32.79 | 38.05 | 34.89 | 34.04 | 34.94 |
120
  | Yi-6B-Chat | 37.80 | 51.74 | 45.36 | 44.25 | 44.79 |
121
+ | GPT-3.5-Turbo | 41.58 | 48.52 | 40.96 | 43.18 | 43.56 |
122
+ | Qwen1.5-7B-Chat | 41.48 | 51.66 | 44.05 | 45.40 | 45.65 |
 
 
123
  | Taiwan-LLM-13B-v2.0-chat | 27.74 | 33.69 | 27.03 | 29.43 | 29.47 |
124
  | Taiwan-LLM-7B-v2.1-chat | 25.58 | 31.76 | 27.36 | 27.61 | 28.08 |
125
 
 
129
  In this test, we use the first 700 characters of the [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as the input and ask the model to write the same article again.
130
  All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel size of 2).
131
 
132
+ | Models | Inference Time (sec)|Estimated Max Input Length (Char)|
133
  |--------------------------------------------------------------------|-------------------|--------------------------|
134
+ | **Breeze-7B-Instruct-v1_0** | 10.74 | 11.1k |
135
+ | Qwen1.5-7B-Chat | 9.35 | 38.9k |
136
+ | Yi-6B-Chat | 10.62 | 5.2k |
137
+ | Mistral-7B-Instruct-v0.2 | 20.48 | 5.1k |
 
 
138
  | Taiwan-LLM-7B-v2.1-chat | 26.26 | 2.2k |
139
+ <!---| Taiwan-LLM-13B-v2.0-chat | 36.80 | 2.2k |--->
 
140
 
 
141
 
142
+ <!---## Long-context Performance
143
+ TBD--->
144
 
145
  ## Use in Transformers
146
 
 
160
 
161
  # Instruction Model
162
  model = AutoModelForCausalLM.from_pretrained(
163
+ "MediaTek-Research/Breeze-7B-Instruct-v1_0",
164
  device_map="auto",
165
  torch_dtype=torch.bfloat16,
166
+ # attn_implementation="flash_attention_2" # optional
167
  )
168
 
169
  # Basemodel
170
  model = AutoModelForCausalLM.from_pretrained(
171
+ "MediaTek-Research/Breeze-7B-Base-v1_0",
172
  device_map="auto",
173
  torch_dtype=torch.bfloat16,
174
+ # attn_implementation="flash_attention_2" # optional
175
  )
176
  ```
177
 
 
190
 
191
  ```python
192
  >>> from transformers import AutoTokenizer
193
+ >>> tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v1_0")
194
  >>> chat = [
195
  ... {"role": "user", "content": "你好,請問你可以完成什麼任務?"},
196
  ... {"role": "assistant", "content": "你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。"},
197
  ... {"role": "user", "content": "太棒了!"},
198
  ... ]
199
  >>> tokenizer.apply_chat_template(chat, tokenize=False)
200
+ "<s>You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan. [INST] 你好,請問你可以完成什麼任務? [/INST] 你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。 [INST] 太棒了! [/INST] "
201
  # Tokenized results
202
  # ['▁', '你好', ',', '請問', '你', '可以', '完成', '什麼', '任務', '?']
203
  # ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
204
  # ['▁', '太', '棒', '了', '!']
205
+
206
+ >>> outputs = model.generate(tokenizer.apply_chat_template(chat, return_tensors="pt"), max_new_tokens=128)
207
+ >>> print(tokenizer.decode(outputs[0]))
208
+
209
  ```
210
 
211
  ## Citation
212
 
213
+ <!--
214
+ ```
215
+ @article{breeze7b2024,
216
+ title={},
217
+ author={},
218
+ journal={arXiv},
219
+ year={2024}
220
+ }
221
+ ```
222
+ --->
223
  ```
224
  @article{MediaTek-Research2024breeze7b,
225
  title={Breeze-7B Technical Report},