npvinHnivqn commited on
Commit
7d36bc4
1 Parent(s): ecb39f0

Update README file

Browse files
Files changed (1) hide show
  1. README.md +73 -194
README.md CHANGED
@@ -3,197 +3,76 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ ## Original result
7
+ ```
8
+ IoU metric: bbox
9
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
10
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
11
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
12
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
13
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
14
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
15
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
16
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002
17
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.013
18
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
19
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
20
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.013
21
+ ```
22
+
23
+ ## After training result
24
+ ```
25
+ IoU metric: bbox
26
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.025
27
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.053
28
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.021
29
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
30
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
31
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.025
32
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.070
33
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.133
34
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.154
35
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
36
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
37
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.155
38
+ ```
39
+
40
+ ## Config
41
+ - dataset: NIH
42
+ - original model: hustvl/yolos-tiny
43
+ - lr: 0.0001
44
+ - dropout_rate: 0.15
45
+ - weight_decay: 0.05
46
+ - max_epochs: 20
47
+ - train samples: 885
48
+
49
+ ## Logging
50
+ ### Training process
51
+ ```
52
+ {'validation_loss': tensor(6.7559, device='cuda:0'), 'validation_loss_ce': tensor(2.5739, device='cuda:0'), 'validation_loss_bbox': tensor(0.4952, device='cuda:0'), 'validation_loss_giou': tensor(0.8531, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
53
+ {'training_loss': tensor(2.4990, device='cuda:0'), 'train_loss_ce': tensor(0.4887, device='cuda:0'), 'train_loss_bbox': tensor(0.1862, device='cuda:0'), 'train_loss_giou': tensor(0.5398, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4497, device='cuda:0'), 'validation_loss_ce': tensor(0.4524, device='cuda:0'), 'validation_loss_bbox': tensor(0.1829, device='cuda:0'), 'validation_loss_giou': tensor(0.5414, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
54
+ {'training_loss': tensor(2.4763, device='cuda:0'), 'train_loss_ce': tensor(0.4236, device='cuda:0'), 'train_loss_bbox': tensor(0.1986, device='cuda:0'), 'train_loss_giou': tensor(0.5300, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2358, device='cuda:0'), 'validation_loss_ce': tensor(0.4386, device='cuda:0'), 'validation_loss_bbox': tensor(0.1531, device='cuda:0'), 'validation_loss_giou': tensor(0.5160, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
55
+ {'training_loss': tensor(2.0404, device='cuda:0'), 'train_loss_ce': tensor(0.4148, device='cuda:0'), 'train_loss_bbox': tensor(0.1398, device='cuda:0'), 'train_loss_giou': tensor(0.4634, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3295, device='cuda:0'), 'validation_loss_ce': tensor(0.4369, device='cuda:0'), 'validation_loss_bbox': tensor(0.1697, device='cuda:0'), 'validation_loss_giou': tensor(0.5220, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
56
+ {'training_loss': tensor(2.0230, device='cuda:0'), 'train_loss_ce': tensor(0.3600, device='cuda:0'), 'train_loss_bbox': tensor(0.1205, device='cuda:0'), 'train_loss_giou': tensor(0.5302, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2546, device='cuda:0'), 'validation_loss_ce': tensor(0.4068, device='cuda:0'), 'validation_loss_bbox': tensor(0.1611, device='cuda:0'), 'validation_loss_giou': tensor(0.5210, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
57
+ {'training_loss': tensor(2.1597, device='cuda:0'), 'train_loss_ce': tensor(0.4342, device='cuda:0'), 'train_loss_bbox': tensor(0.1431, device='cuda:0'), 'train_loss_giou': tensor(0.5049, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0929, device='cuda:0'), 'validation_loss_ce': tensor(0.4126, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.4916, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
58
+ {'training_loss': tensor(2.0645, device='cuda:0'), 'train_loss_ce': tensor(0.4740, device='cuda:0'), 'train_loss_bbox': tensor(0.1324, device='cuda:0'), 'train_loss_giou': tensor(0.4642, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2642, device='cuda:0'), 'validation_loss_ce': tensor(0.4195, device='cuda:0'), 'validation_loss_bbox': tensor(0.1665, device='cuda:0'), 'validation_loss_giou': tensor(0.5060, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
59
+ {'training_loss': tensor(1.7443, device='cuda:0'), 'train_loss_ce': tensor(0.3507, device='cuda:0'), 'train_loss_bbox': tensor(0.1351, device='cuda:0'), 'train_loss_giou': tensor(0.3591, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9930, device='cuda:0'), 'validation_loss_ce': tensor(0.4063, device='cuda:0'), 'validation_loss_bbox': tensor(0.1294, device='cuda:0'), 'validation_loss_giou': tensor(0.4698, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
60
+ {'training_loss': tensor(2.2440, device='cuda:0'), 'train_loss_ce': tensor(0.3884, device='cuda:0'), 'train_loss_bbox': tensor(0.1348, device='cuda:0'), 'train_loss_giou': tensor(0.5907, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0082, device='cuda:0'), 'validation_loss_ce': tensor(0.4112, device='cuda:0'), 'validation_loss_bbox': tensor(0.1296, device='cuda:0'), 'validation_loss_giou': tensor(0.4744, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
61
+ {'training_loss': tensor(1.7194, device='cuda:0'), 'train_loss_ce': tensor(0.3257, device='cuda:0'), 'train_loss_bbox': tensor(0.1185, device='cuda:0'), 'train_loss_giou': tensor(0.4007, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0462, device='cuda:0'), 'validation_loss_ce': tensor(0.4009, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.4670, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
62
+ {'training_loss': tensor(1.3192, device='cuda:0'), 'train_loss_ce': tensor(0.3495, device='cuda:0'), 'train_loss_bbox': tensor(0.1083, device='cuda:0'), 'train_loss_giou': tensor(0.2141, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0731, device='cuda:0'), 'validation_loss_ce': tensor(0.4010, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.4888, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
63
+ {'training_loss': tensor(2.5797, device='cuda:0'), 'train_loss_ce': tensor(0.4210, device='cuda:0'), 'train_loss_bbox': tensor(0.1568, device='cuda:0'), 'train_loss_giou': tensor(0.6874, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.1459, device='cuda:0'), 'validation_loss_ce': tensor(0.4006, device='cuda:0'), 'validation_loss_bbox': tensor(0.1465, device='cuda:0'), 'validation_loss_giou': tensor(0.5065, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
64
+ {'training_loss': tensor(1.9156, device='cuda:0'), 'train_loss_ce': tensor(0.3240, device='cuda:0'), 'train_loss_bbox': tensor(0.1310, device='cuda:0'), 'train_loss_giou': tensor(0.4683, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2520, device='cuda:0'), 'validation_loss_ce': tensor(0.3980, device='cuda:0'), 'validation_loss_bbox': tensor(0.1614, device='cuda:0'), 'validation_loss_giou': tensor(0.5236, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
65
+ {'training_loss': tensor(2.9559, device='cuda:0'), 'train_loss_ce': tensor(0.4028, device='cuda:0'), 'train_loss_bbox': tensor(0.2567, device='cuda:0'), 'train_loss_giou': tensor(0.6347, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4024, device='cuda:0'), 'validation_loss_ce': tensor(0.3812, device='cuda:0'), 'validation_loss_bbox': tensor(0.1705, device='cuda:0'), 'validation_loss_giou': tensor(0.5843, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
66
+ {'training_loss': tensor(2.1148, device='cuda:0'), 'train_loss_ce': tensor(0.4487, device='cuda:0'), 'train_loss_bbox': tensor(0.1306, device='cuda:0'), 'train_loss_giou': tensor(0.5065, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2119, device='cuda:0'), 'validation_loss_ce': tensor(0.3946, device='cuda:0'), 'validation_loss_bbox': tensor(0.1521, device='cuda:0'), 'validation_loss_giou': tensor(0.5285, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
67
+ {'training_loss': tensor(1.6145, device='cuda:0'), 'train_loss_ce': tensor(0.3484, device='cuda:0'), 'train_loss_bbox': tensor(0.0966, device='cuda:0'), 'train_loss_giou': tensor(0.3917, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2147, device='cuda:0'), 'validation_loss_ce': tensor(0.4000, device='cuda:0'), 'validation_loss_bbox': tensor(0.1524, device='cuda:0'), 'validation_loss_giou': tensor(0.5264, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
68
+ {'training_loss': tensor(2.4464, device='cuda:0'), 'train_loss_ce': tensor(0.3513, device='cuda:0'), 'train_loss_bbox': tensor(0.1503, device='cuda:0'), 'train_loss_giou': tensor(0.6718, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0945, device='cuda:0'), 'validation_loss_ce': tensor(0.3839, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.5079, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
69
+ {'training_loss': tensor(2.1035, device='cuda:0'), 'train_loss_ce': tensor(0.3531, device='cuda:0'), 'train_loss_bbox': tensor(0.1833, device='cuda:0'), 'train_loss_giou': tensor(0.4169, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0258, device='cuda:0'), 'validation_loss_ce': tensor(0.3667, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4833, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
70
+ {'training_loss': tensor(1.8120, device='cuda:0'), 'train_loss_ce': tensor(0.3834, device='cuda:0'), 'train_loss_bbox': tensor(0.1274, device='cuda:0'), 'train_loss_giou': tensor(0.3959, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0069, device='cuda:0'), 'validation_loss_ce': tensor(0.3738, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4665, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
71
+ {'training_loss': tensor(1.2792, device='cuda:0'), 'train_loss_ce': tensor(0.3943, device='cuda:0'), 'train_loss_bbox': tensor(0.0620, device='cuda:0'), 'train_loss_giou': tensor(0.2874, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9124, device='cuda:0'), 'validation_loss_ce': tensor(0.3761, device='cuda:0'), 'validation_loss_bbox': tensor(0.1317, device='cuda:0'), 'validation_loss_giou': tensor(0.4388, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
72
+ {'training_loss': tensor(1.8847, device='cuda:0'), 'train_loss_ce': tensor(0.3796, device='cuda:0'), 'train_loss_bbox': tensor(0.1281, device='cuda:0'), 'train_loss_giou': tensor(0.4323, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0097, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4806, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
73
+ ```
74
+
75
+ ## Examples
76
+ {'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}
77
+
78
+ ![Example](./example.png)