npvinHnivqn
commited on
Commit
•
1689041
1
Parent(s):
8684d08
Update README file
Browse files
README.md
CHANGED
@@ -13,28 +13,28 @@ IoU metric: bbox
|
|
13 |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
14 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
|
15 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
|
16 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.
|
17 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
18 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
19 |
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
20 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.
|
21 |
```
|
22 |
|
23 |
## After training result
|
24 |
```
|
25 |
IoU metric: bbox
|
26 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
27 |
-
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.
|
28 |
-
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.
|
29 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
30 |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
31 |
-
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.
|
32 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.
|
33 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.
|
34 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.
|
35 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
36 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.
|
37 |
-
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.
|
38 |
```
|
39 |
|
40 |
## Config
|
@@ -42,44 +42,44 @@ IoU metric: bbox
|
|
42 |
- original model: hustvl/yolos-tiny
|
43 |
- lr: 0.0001
|
44 |
- dropout_rate: 0.1
|
45 |
-
- weight_decay: 0
|
46 |
- max_epochs: 30
|
47 |
- train samples: 885
|
48 |
|
49 |
## Logging
|
50 |
### Training process
|
51 |
```
|
52 |
-
{'validation_loss': tensor(7.
|
53 |
-
{'training_loss': tensor(2.
|
54 |
-
{'training_loss': tensor(
|
55 |
-
{'training_loss': tensor(2.
|
56 |
-
{'training_loss': tensor(2.
|
57 |
-
{'training_loss': tensor(2.
|
58 |
-
{'training_loss': tensor(
|
59 |
-
{'training_loss': tensor(1.
|
60 |
-
{'training_loss': tensor(
|
61 |
-
{'training_loss': tensor(
|
62 |
-
{'training_loss': tensor(2.
|
63 |
-
{'training_loss': tensor(
|
64 |
-
{'training_loss': tensor(
|
65 |
-
{'training_loss': tensor(
|
66 |
-
{'training_loss': tensor(
|
67 |
-
{'training_loss': tensor(2.
|
68 |
-
{'training_loss': tensor(
|
69 |
-
{'training_loss': tensor(
|
70 |
-
{'training_loss': tensor(
|
71 |
-
{'training_loss': tensor(1.
|
72 |
-
{'training_loss': tensor(
|
73 |
-
{'training_loss': tensor(1.
|
74 |
-
{'training_loss': tensor(
|
75 |
-
{'training_loss': tensor(1.
|
76 |
-
{'training_loss': tensor(
|
77 |
-
{'training_loss': tensor(
|
78 |
-
{'training_loss': tensor(
|
79 |
-
{'training_loss': tensor(1.
|
80 |
-
{'training_loss': tensor(
|
81 |
-
{'training_loss': tensor(1.
|
82 |
-
{'training_loss': tensor(1.
|
83 |
```
|
84 |
|
85 |
## Examples
|
|
|
13 |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
14 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
|
15 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
|
16 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.001
|
17 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002
|
18 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
19 |
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
20 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002
|
21 |
```
|
22 |
|
23 |
## After training result
|
24 |
```
|
25 |
IoU metric: bbox
|
26 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.028
|
27 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.075
|
28 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.021
|
29 |
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
30 |
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
31 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.029
|
32 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.089
|
33 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.152
|
34 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.166
|
35 |
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
36 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
37 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.168
|
38 |
```
|
39 |
|
40 |
## Config
|
|
|
42 |
- original model: hustvl/yolos-tiny
|
43 |
- lr: 0.0001
|
44 |
- dropout_rate: 0.1
|
45 |
+
- weight_decay: 1.0
|
46 |
- max_epochs: 30
|
47 |
- train samples: 885
|
48 |
|
49 |
## Logging
|
50 |
### Training process
|
51 |
```
|
52 |
+
{'validation_loss': tensor(7.2510, device='cuda:0'), 'validation_loss_ce': tensor(2.7062, device='cuda:0'), 'validation_loss_bbox': tensor(0.5285, device='cuda:0'), 'validation_loss_giou': tensor(0.9513, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
|
53 |
+
{'training_loss': tensor(2.0733, device='cuda:0'), 'train_loss_ce': tensor(0.4772, device='cuda:0'), 'train_loss_bbox': tensor(0.1542, device='cuda:0'), 'train_loss_giou': tensor(0.4126, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3407, device='cuda:0'), 'validation_loss_ce': tensor(0.4447, device='cuda:0'), 'validation_loss_bbox': tensor(0.1600, device='cuda:0'), 'validation_loss_giou': tensor(0.5479, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
54 |
+
{'training_loss': tensor(2.3671, device='cuda:0'), 'train_loss_ce': tensor(0.3991, device='cuda:0'), 'train_loss_bbox': tensor(0.1568, device='cuda:0'), 'train_loss_giou': tensor(0.5919, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3726, device='cuda:0'), 'validation_loss_ce': tensor(0.4201, device='cuda:0'), 'validation_loss_bbox': tensor(0.1725, device='cuda:0'), 'validation_loss_giou': tensor(0.5451, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
55 |
+
{'training_loss': tensor(2.8530, device='cuda:0'), 'train_loss_ce': tensor(0.4628, device='cuda:0'), 'train_loss_bbox': tensor(0.2022, device='cuda:0'), 'train_loss_giou': tensor(0.6896, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1740, device='cuda:0'), 'validation_loss_ce': tensor(0.4275, device='cuda:0'), 'validation_loss_bbox': tensor(0.1443, device='cuda:0'), 'validation_loss_giou': tensor(0.5126, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
56 |
+
{'training_loss': tensor(2.4427, device='cuda:0'), 'train_loss_ce': tensor(0.4072, device='cuda:0'), 'train_loss_bbox': tensor(0.1748, device='cuda:0'), 'train_loss_giou': tensor(0.5806, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1416, device='cuda:0'), 'validation_loss_ce': tensor(0.4228, device='cuda:0'), 'validation_loss_bbox': tensor(0.1418, device='cuda:0'), 'validation_loss_giou': tensor(0.5049, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
57 |
+
{'training_loss': tensor(2.2765, device='cuda:0'), 'train_loss_ce': tensor(0.4684, device='cuda:0'), 'train_loss_bbox': tensor(0.1437, device='cuda:0'), 'train_loss_giou': tensor(0.5449, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1062, device='cuda:0'), 'validation_loss_ce': tensor(0.4127, device='cuda:0'), 'validation_loss_bbox': tensor(0.1439, device='cuda:0'), 'validation_loss_giou': tensor(0.4869, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
58 |
+
{'training_loss': tensor(1.9443, device='cuda:0'), 'train_loss_ce': tensor(0.3799, device='cuda:0'), 'train_loss_bbox': tensor(0.1032, device='cuda:0'), 'train_loss_giou': tensor(0.5243, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9993, device='cuda:0'), 'validation_loss_ce': tensor(0.4028, device='cuda:0'), 'validation_loss_bbox': tensor(0.1352, device='cuda:0'), 'validation_loss_giou': tensor(0.4602, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
59 |
+
{'training_loss': tensor(1.7868, device='cuda:0'), 'train_loss_ce': tensor(0.3504, device='cuda:0'), 'train_loss_bbox': tensor(0.1213, device='cuda:0'), 'train_loss_giou': tensor(0.4149, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0064, device='cuda:0'), 'validation_loss_ce': tensor(0.3905, device='cuda:0'), 'validation_loss_bbox': tensor(0.1337, device='cuda:0'), 'validation_loss_giou': tensor(0.4736, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
60 |
+
{'training_loss': tensor(1.8019, device='cuda:0'), 'train_loss_ce': tensor(0.3278, device='cuda:0'), 'train_loss_bbox': tensor(0.0954, device='cuda:0'), 'train_loss_giou': tensor(0.4986, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0142, device='cuda:0'), 'validation_loss_ce': tensor(0.3723, device='cuda:0'), 'validation_loss_bbox': tensor(0.1391, device='cuda:0'), 'validation_loss_giou': tensor(0.4733, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
61 |
+
{'training_loss': tensor(1.7681, device='cuda:0'), 'train_loss_ce': tensor(0.2725, device='cuda:0'), 'train_loss_bbox': tensor(0.1038, device='cuda:0'), 'train_loss_giou': tensor(0.4883, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0256, device='cuda:0'), 'validation_loss_ce': tensor(0.3890, device='cuda:0'), 'validation_loss_bbox': tensor(0.1334, device='cuda:0'), 'validation_loss_giou': tensor(0.4848, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
62 |
+
{'training_loss': tensor(2.7969, device='cuda:0'), 'train_loss_ce': tensor(0.3935, device='cuda:0'), 'train_loss_bbox': tensor(0.1829, device='cuda:0'), 'train_loss_giou': tensor(0.7444, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0852, device='cuda:0'), 'validation_loss_ce': tensor(0.3799, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.5084, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
63 |
+
{'training_loss': tensor(2.2780, device='cuda:0'), 'train_loss_ce': tensor(0.3727, device='cuda:0'), 'train_loss_bbox': tensor(0.1636, device='cuda:0'), 'train_loss_giou': tensor(0.5436, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8908, device='cuda:0'), 'validation_loss_ce': tensor(0.3772, device='cuda:0'), 'validation_loss_bbox': tensor(0.1258, device='cuda:0'), 'validation_loss_giou': tensor(0.4424, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
64 |
+
{'training_loss': tensor(2.1853, device='cuda:0'), 'train_loss_ce': tensor(0.4098, device='cuda:0'), 'train_loss_bbox': tensor(0.1223, device='cuda:0'), 'train_loss_giou': tensor(0.5820, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8623, device='cuda:0'), 'validation_loss_ce': tensor(0.3716, device='cuda:0'), 'validation_loss_bbox': tensor(0.1160, device='cuda:0'), 'validation_loss_giou': tensor(0.4554, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
65 |
+
{'training_loss': tensor(2.1250, device='cuda:0'), 'train_loss_ce': tensor(0.3339, device='cuda:0'), 'train_loss_bbox': tensor(0.1228, device='cuda:0'), 'train_loss_giou': tensor(0.5886, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8199, device='cuda:0'), 'validation_loss_ce': tensor(0.3661, device='cuda:0'), 'validation_loss_bbox': tensor(0.1161, device='cuda:0'), 'validation_loss_giou': tensor(0.4366, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
66 |
+
{'training_loss': tensor(1.8382, device='cuda:0'), 'train_loss_ce': tensor(0.3676, device='cuda:0'), 'train_loss_bbox': tensor(0.1031, device='cuda:0'), 'train_loss_giou': tensor(0.4776, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9126, device='cuda:0'), 'validation_loss_ce': tensor(0.3584, device='cuda:0'), 'validation_loss_bbox': tensor(0.1291, device='cuda:0'), 'validation_loss_giou': tensor(0.4544, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
67 |
+
{'training_loss': tensor(2.2184, device='cuda:0'), 'train_loss_ce': tensor(0.3580, device='cuda:0'), 'train_loss_bbox': tensor(0.1687, device='cuda:0'), 'train_loss_giou': tensor(0.5085, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9112, device='cuda:0'), 'validation_loss_ce': tensor(0.3618, device='cuda:0'), 'validation_loss_bbox': tensor(0.1275, device='cuda:0'), 'validation_loss_giou': tensor(0.4559, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
68 |
+
{'training_loss': tensor(1.4304, device='cuda:0'), 'train_loss_ce': tensor(0.2193, device='cuda:0'), 'train_loss_bbox': tensor(0.0824, device='cuda:0'), 'train_loss_giou': tensor(0.3997, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9278, device='cuda:0'), 'validation_loss_ce': tensor(0.3509, device='cuda:0'), 'validation_loss_bbox': tensor(0.1320, device='cuda:0'), 'validation_loss_giou': tensor(0.4585, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
69 |
+
{'training_loss': tensor(1.8228, device='cuda:0'), 'train_loss_ce': tensor(0.4408, device='cuda:0'), 'train_loss_bbox': tensor(0.1186, device='cuda:0'), 'train_loss_giou': tensor(0.3946, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8695, device='cuda:0'), 'validation_loss_ce': tensor(0.3668, device='cuda:0'), 'validation_loss_bbox': tensor(0.1232, device='cuda:0'), 'validation_loss_giou': tensor(0.4434, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
70 |
+
{'training_loss': tensor(1.4936, device='cuda:0'), 'train_loss_ce': tensor(0.2966, device='cuda:0'), 'train_loss_bbox': tensor(0.0936, device='cuda:0'), 'train_loss_giou': tensor(0.3645, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8164, device='cuda:0'), 'validation_loss_ce': tensor(0.3554, device='cuda:0'), 'validation_loss_bbox': tensor(0.1208, device='cuda:0'), 'validation_loss_giou': tensor(0.4286, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
71 |
+
{'training_loss': tensor(1.5842, device='cuda:0'), 'train_loss_ce': tensor(0.3072, device='cuda:0'), 'train_loss_bbox': tensor(0.0867, device='cuda:0'), 'train_loss_giou': tensor(0.4217, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9658, device='cuda:0'), 'validation_loss_ce': tensor(0.3572, device='cuda:0'), 'validation_loss_bbox': tensor(0.1300, device='cuda:0'), 'validation_loss_giou': tensor(0.4792, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
72 |
+
{'training_loss': tensor(1.4302, device='cuda:0'), 'train_loss_ce': tensor(0.3983, device='cuda:0'), 'train_loss_bbox': tensor(0.0977, device='cuda:0'), 'train_loss_giou': tensor(0.2716, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9079, device='cuda:0'), 'validation_loss_ce': tensor(0.3678, device='cuda:0'), 'validation_loss_bbox': tensor(0.1266, device='cuda:0'), 'validation_loss_giou': tensor(0.4535, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
|
73 |
+
{'training_loss': tensor(1.8392, device='cuda:0'), 'train_loss_ce': tensor(0.3940, device='cuda:0'), 'train_loss_bbox': tensor(0.1368, device='cuda:0'), 'train_loss_giou': tensor(0.3806, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1207, device='cuda:0'), 'validation_loss_ce': tensor(0.3700, device='cuda:0'), 'validation_loss_bbox': tensor(0.1498, device='cuda:0'), 'validation_loss_giou': tensor(0.5008, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
74 |
+
{'training_loss': tensor(2.0952, device='cuda:0'), 'train_loss_ce': tensor(0.3566, device='cuda:0'), 'train_loss_bbox': tensor(0.1601, device='cuda:0'), 'train_loss_giou': tensor(0.4692, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0796, device='cuda:0'), 'validation_loss_ce': tensor(0.4127, device='cuda:0'), 'validation_loss_bbox': tensor(0.1413, device='cuda:0'), 'validation_loss_giou': tensor(0.4801, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
75 |
+
{'training_loss': tensor(1.7375, device='cuda:0'), 'train_loss_ce': tensor(0.3531, device='cuda:0'), 'train_loss_bbox': tensor(0.1156, device='cuda:0'), 'train_loss_giou': tensor(0.4033, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9825, device='cuda:0'), 'validation_loss_ce': tensor(0.3733, device='cuda:0'), 'validation_loss_bbox': tensor(0.1305, device='cuda:0'), 'validation_loss_giou': tensor(0.4784, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
76 |
+
{'training_loss': tensor(2.6773, device='cuda:0'), 'train_loss_ce': tensor(0.3795, device='cuda:0'), 'train_loss_bbox': tensor(0.2213, device='cuda:0'), 'train_loss_giou': tensor(0.5956, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0580, device='cuda:0'), 'validation_loss_ce': tensor(0.3698, device='cuda:0'), 'validation_loss_bbox': tensor(0.1406, device='cuda:0'), 'validation_loss_giou': tensor(0.4927, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
77 |
+
{'training_loss': tensor(2.0451, device='cuda:0'), 'train_loss_ce': tensor(0.3619, device='cuda:0'), 'train_loss_bbox': tensor(0.1562, device='cuda:0'), 'train_loss_giou': tensor(0.4512, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0350, device='cuda:0'), 'validation_loss_ce': tensor(0.3855, device='cuda:0'), 'validation_loss_bbox': tensor(0.1382, device='cuda:0'), 'validation_loss_giou': tensor(0.4791, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
78 |
+
{'training_loss': tensor(2.1357, device='cuda:0'), 'train_loss_ce': tensor(0.3901, device='cuda:0'), 'train_loss_bbox': tensor(0.1723, device='cuda:0'), 'train_loss_giou': tensor(0.4422, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9736, device='cuda:0'), 'validation_loss_ce': tensor(0.3603, device='cuda:0'), 'validation_loss_bbox': tensor(0.1357, device='cuda:0'), 'validation_loss_giou': tensor(0.4673, device='cuda:0'), 'validation_cardinality_error': tensor(0.8687, device='cuda:0')}
|
79 |
+
{'training_loss': tensor(1.5814, device='cuda:0'), 'train_loss_ce': tensor(0.3938, device='cuda:0'), 'train_loss_bbox': tensor(0.0935, device='cuda:0'), 'train_loss_giou': tensor(0.3600, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0607, device='cuda:0'), 'validation_loss_ce': tensor(0.3561, device='cuda:0'), 'validation_loss_bbox': tensor(0.1488, device='cuda:0'), 'validation_loss_giou': tensor(0.4804, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
|
80 |
+
{'training_loss': tensor(1.7642, device='cuda:0'), 'train_loss_ce': tensor(0.3312, device='cuda:0'), 'train_loss_bbox': tensor(0.0892, device='cuda:0'), 'train_loss_giou': tensor(0.4934, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9519, device='cuda:0'), 'validation_loss_ce': tensor(0.3478, device='cuda:0'), 'validation_loss_bbox': tensor(0.1330, device='cuda:0'), 'validation_loss_giou': tensor(0.4697, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
|
81 |
+
{'training_loss': tensor(1.3615, device='cuda:0'), 'train_loss_ce': tensor(0.3474, device='cuda:0'), 'train_loss_bbox': tensor(0.0976, device='cuda:0'), 'train_loss_giou': tensor(0.2630, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.8283, device='cuda:0'), 'validation_loss_ce': tensor(0.3620, device='cuda:0'), 'validation_loss_bbox': tensor(0.1182, device='cuda:0'), 'validation_loss_giou': tensor(0.4376, device='cuda:0'), 'validation_cardinality_error': tensor(0.9596, device='cuda:0')}
|
82 |
+
{'training_loss': tensor(1.4507, device='cuda:0'), 'train_loss_ce': tensor(0.2499, device='cuda:0'), 'train_loss_bbox': tensor(0.0839, device='cuda:0'), 'train_loss_giou': tensor(0.3905, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0212, device='cuda:0'), 'validation_loss_ce': tensor(0.3600, device='cuda:0'), 'validation_loss_bbox': tensor(0.1371, device='cuda:0'), 'validation_loss_giou': tensor(0.4878, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
83 |
```
|
84 |
|
85 |
## Examples
|